Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, carbon fixation in A. ferrooxidans. (73/101)

 (+info)

Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. (74/101)

 (+info)

Sulfite oxidation catalyzed by aa(3)-type cytochrome c oxidase in Acidithiobacillus ferrooxidans. (75/101)

Sulfite is produced as a toxic intermediate during Acidithiobacillus ferrooxidans sulfur oxidation. A. ferrooxidans D3-2, which posseses the highest copper bioleaching activity, is more resistant to sulfite than other A. ferrooxidans strains, including ATCC 23270. When sulfite oxidase was purified homogeneously from strain D3-2, the oxidized and reduced forms of the purified sulfite oxidase absorption spectra corresponded to those of A. ferrooxidans aa(3)-type cytochrome c oxidase. The confirmed molecular weights of the alpha-subunit (52.5 kDa), the beta-subunit (25 kDa), and the gamma-subunit (20 kDa) of the purified sulfite oxidase and the N-terminal amino acid sequences of the gamma-subunit of sulfite oxidase (AAKKG) corresponded to those of A. ferrooxidans ATCC 23270 cytochrome c oxidase. The sulfite oxidase activities of the iron- and sulfur-grown A. ferrooxidans D3-2 were much higher than those cytochrome c oxidases purified from A. ferrooxidans strains ATCC 23270, MON-1 and AP19-3. The activities of sulfite oxidase purified from iron- and sulfur-grown strain D3-2 were completely inhibited by an antibody raised against a purified A. ferrooxidans MON-1 aa(3)-type cytochrome c oxidase. This is the first report to indicate that aa(3)-type cytochrome c oxidase catalyzed sulfite oxidation in A. ferrooxidans.  (+info)

Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate. (76/101)

 (+info)

Construction of recombinant mercury resistant Acidithiobacillus caldus. (77/101)

 (+info)

Differential gene expression in response to copper in Acidithiobacillus ferrooxidans strains possessing dissimilar copper resistance. (78/101)

Locus afe_0454 from Acidithiobacillus ferrooxidans (At.ferrooxidans) is annotated as related to copper resistance in The Institute for Genomic Research database. In our study, two At.ferrooxidans strains, 26(#) and DC, with different levels of copper ion resistance were isolated from acid mine drainages at two major copper mines in China, and their copper-resistance capacity was determined. The 26(#) strain had a copper-tolerance level of 0.22 mol/L, whereas the DC strain had a lower copper-tolerance level of 0.04 mol/L. The mutant 26(#) was generated from strain 26(#), and its copper-tolerance level was 0.25 mol/L. Using real-time quantitative reverse transcription polymerase chain reaction, differential expression of the afe_0454 gene during copper ion stress of these three strains was investigated. The results showed that the expression of afe_0454 was increased under copper ion stress, indicating that the afe_0454 gene is sensitive to copper levels. Furthermore, the afe_0454 gene expression ratio varied in the different copper-resistant strains. Gene expression was highest in the highest copper-resistant strain. The deduced amino acid sequence of the afe_0454 gene was 56.87% non-polar, indicating the AFE_0454 protein was hydrophobic. Searching with the AFE_0454 protein in The Institute for Genomic Research database showed that the structure of the copper resistance protein D (CopD), which transports copper ions outside of the cell, had the highest sequence identity (46%). Bioinformatics analysis showed that the AFE_0454 protein has eight transmembrane helixes and was predicted to be localized to the plasma membrane. These results strongly suggested that the AFE_0454 protein is likely a transmembrane protein and might be directly involved in copper ion resistance.  (+info)

Assembly mechanism of [Fe2S2] cluster in ferredoxin from Acidithiobacillus ferrooxidans. (79/101)

Ferredoxin is a typical iron-sulfur protein that is ubiquitous in biological redox systems. This study investigates the in vitro assembly of a [Fe2S2] cluster in the ferredoxin from Acidithiobacillus ferrooxidans in the presence of three scaffold proteins: IscA, IscS, and IscU. The spectra and MALDI-TOF MS results for the reconstituted ferredoxin confirm that the iron-sulfur cluster was correctly assembled in the protein. The inactivation of cysteine desulfurase by L-allylglycine completely blocked any [Fe2S2] cluster assembly in the ferredoxin in E. coli, confirming that cysteine desulfurase is an essential component for iron-sulfur cluster assembly. The present results also provide strong evidence that [Fe2S2] cluster assembly in ferredoxin follows the AUS pathway.  (+info)

Characterization of an OmpA-like outer membrane protein of the acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans. (80/101)

 (+info)