Dexamethasone lowers cytosolic pH in macrophages by altering alkalinizing pH-regulatory mechanisms. (41/1073)

The effect of dexamethasone on cytosolic pH (pHc) in resident mouse peritoneal macrophages was investigated using the fluorescent probe 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein tetra-acetoxymethyl ester (BCECF-AM). Dexamethasone was found to significantly lower pHc and this reduction of pHc evolved gradually with time, was near maximal at 10 nM dexamethasone, and could be prevented by the glucocorticoid receptor antagonist RU-38486. The lower pHc of dexamethasone-treated cells was neither due to a reduction of cellular buffer capacity nor to an altered regulation of pHc by Na+/H+-exchange or by acidifying Na+-independent Cl-/HCO3- exchange, as assessed by studies of pH recovery after acute acid and alkali loads, respectively. Instead, an impaired pHc recovery by both the H+-ATPase and the alkalinizing Na+-dependent Cl-/HCO3- exchange was observed. This impairment was most likely not caused by an altered expression or localization of the 39-kDa subunit of the proton pump. Dexamethasone treatment caused a reduction of pHc also in a HCO3--containing solution, suggesting that acid extrusion by both the H+-ATPase and Na+-dependent Cl-/HCO3- exchange is important for maintenance and regulation of macrophage resting pHc. The lowering of macrophage pHc might be one mechanism whereby glucocorticoids exert their anti-inflammatory effects.  (+info)

Evidence for the role of a Na(+)/HCO(3)(-) cotransporter in trout hepatocyte pHi regulation. (42/1073)

The mechanisms of intracellular pH (pHi) regulation were examined in hepatocytes of the rainbow trout Oncorhynchus mykiss. pHi was monitored using the pH-sensitive fluorescent dye BCECF, and the effects of various media and pharmacological agents were examined for their influence on baseline pHi and recovery rates from acid and base loading. Rates of Na(+) uptake were measured using (22)Na, and changes in membrane potential were examined using the potentiometric fluorescent dye Oxonol VI. The rate of proton extrusion following acid loading was diminished by the blockade of either Na(+)/H(+) exchange (using amiloride) or anion transport (using DIDS). The removal of external HCO(3)(-) and the abolition of outward K(+) diffusion by the channel blocker Ba(2+) also decreased the rate of proton extrusion following acid load. Depolarization of the cell membrane with 50 mmol l(-)(1) K(+), however, did not affect pHi. The rate of recovery from base loading was significantly diminished by the blockade of anion transport, removal of external HCO(3)(-) and, to a lesser extent, by blocking Na(+)/H(+) exchange. The blockade of K(+) conductance had no effect. The decrease in Na(+) uptake rate observed in the presence of the anion transport blocker DIDS and the DIDS-sensitive hyperpolarization of membrane potential during recovery from acid loading suggest that a Na(+)-dependent electrogenic transport system is involved in the restoration of pHi after intracellular acidification. The effects on baseline pHi indicate that the different membrane exchangers are tonically active in the maintenance of steady-state pHi. This study confirms the roles of a Na(+)/H(+) exchanger and a Cl(-)/HCO(3)(-) exchanger in the regulation of trout hepatocyte pHi and provides new evidence that a Na(+)/HCO(3)(-) cotransporter contributes to pHi regulation.  (+info)

A mathematical model of the outer medullary collecting duct of the rat. (43/1073)

A mathematical model of the outer medullary collecting duct (OMCD) has been developed, consisting of alpha-intercalated cells and a paracellular pathway, and which includes Na(+), K(+), Cl(-), HCO(3)(-), CO(2), H(2)CO(3), phosphate, ammonia, and urea. Proton secretion across the luminal cell membrane is mediated by both H(+)-ATPase and H-K-ATPase, with fluxes through the H-K-ATPase given by a previously developed kinetic model (Weinstein AM. Am J Physiol Renal Physiol 274: F856-F867, 1998). The flux across each ATPase is substantial, and variation in abundance of either pump can be used to control OMCD proton secretion. In comparison with the H(+)-ATPase, flux through the H-K-ATPase is relatively insensitive to changes in lumen pH, so as luminal acidification proceeds, proton secretion shifts toward this pathway. Peritubular HCO(3)(-) exit is via a conductive pathway and via the Cl(-)/HCO(3)(-) exchanger, AE1. To represent AE1, a kinetic model has been developed based on transport studies obtained at 38 degrees C in red blood cells. (Gasbjerg PK, Knauf PA, and Brahm J. J Gen Physiol 108: 565-575, 1996; Knauf PA, Gasbjerg PK, and Brahm J. J Gen Physiol 108: 577-589, 1996). Model calculations indicate that if all of the chloride entry via AE1 recycles across a peritubular chloride channel and if this channel is anything other than highly selective for chloride, then it should conduct a substantial fraction of the bicarbonate exit. Since both luminal membrane proton pumps are sensitive to small changes in cytosolic pH, variation in density of either AE1 or peritubular anion conductance can modulate OMCD proton secretory rate. With respect to the OMCD in situ, available buffer is predicted to be abundant, including delivered HCO(3)(-) and HPO(4)(2-), as well as peritubular NH(3). Thus, buffer availability is unlikely to exert a regulatory role in total proton secretion by this tubule segment.  (+info)

Potassium depletion increases proton pump (H(+)-ATPase) activity in intercalated cells of cortical collecting duct. (44/1073)

Intercalated cells (ICs) from kidney collecting ducts contain proton-transporting ATPases (H(+)-ATPases) whose plasma membrane expression is regulated under a variety of conditions. It has been shown that net proton secretion occurs in the distal nephron from chronically K(+)-depleted rats and that upregulation of tubular H(+)- ATPase is involved in this process. However, regulation of this protein at the level of individual cells has not so far been examined. In the present study, H(+)-ATPase activity was determined in individually identified ICs from control and chronically K(+)-depleted rats (9-14 days on a low-K(+) diet) by monitoring K(+)- and Na(+)-independent H(+) extrusion rates after an acute acid load. Split-open rat cortical collecting tubules were loaded with the intracellular pH (pH(i)) indicator 2', 7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, and pH(i) was determined by using ratiometric fluorescence imaging. The rate of pH(i) recovery in ICs in response to an acute acid load, a measure of plasma membrane H(+)-ATPase activity, was increased after K(+) depletion to almost three times that of controls. Furthermore, the lag time before the start of pH(i) recovery after the cells were maximally acidified fell from 93.5 +/- 13.7 s in controls to 24.5 +/- 2.1 s in K(+)-depleted rats. In all ICs tested, Na(+)- and K(+)-independent pH(i) recovery was abolished in the presence of bafilomycin (100 nM), an inhibitor of the H(+)-ATPase. Analysis of the cell-to-cell variability in the rate of pH(i) recovery reveals a change in the distribution of membrane-bound proton pumps in the IC population of cortical collecting duct from K(+)-depleted rats. Immunocytochemical analysis of collecting ducts from control and K(+)-depleted rats showed that K(+)-depletion increased the number of ICs with tight apical H(+)ATPase staining and decreased the number of cells with diffuse or basolateral H(+)-ATPase staining. Taken together, these data indicate that chronic K(+) depletion induces a marked increase in plasma membrane H(+)ATPase activity in individual ICs.  (+info)

Forearm muscle metabolism studied using (31)P-MRS during progressive exercise to fatigue after Acz administration. (45/1073)

The effects of acetazolamide (Acz)-induced carbonic anhydrase inhibition (CAI) on muscle intracellular thresholds (T) for intracellular pH (pH(i)) and inorganic phosphate-to-phosphate creatine ratio (P(i)/PCr) and the plasma lactate (La(-)) threshold were examined in nine adult male subjects performing forearm wrist flexion exercise to fatigue. Exercise consisted of raising and lowering (1-s contraction, 1-s relaxation) a cylinder whose volume increased at a rate of 200 ml/min. The protocol was performed during control (Con) and after 45 min of CAI with Acz (10 mg/kg body wt iv). T(pH(i)) and T(P(i)/PCr), determined using (31)P-labeled magnetic resonance spectroscopy (MRS), were similar in Acz (722 +/- 50 and 796 +/- 75 mW, respectively) and Con (855 +/- 211 and 835 +/- 235 mW, respectively). The pH(i) was similar at end-exercise (6.38 +/- 0.10 Acz and 6.43 +/- 0.22 Con), but pH(i) recovery was slowed in Acz. In a separate experiment, blood was sampled from a deep arm vein at the elbow for determination of plasma lactate concentration ([La(-)](pl)) and T(La(-)). [La(-)](pl) was lower (P < 0.05) in Acz than Con (3.7 +/- 1.7 vs. 5.0 +/- 1.7 mmol/l) at end-exercise and in early recovery, but T(La(-)) was higher (1,433 +/- 243 vs. 1,041 +/- 414 mW, respectively). These data suggest that the lower [La(-)](pl) seen with CAI was not due to a delayed onset or rate of muscle La(-) accumulation but may be related to impaired La(-) removal from muscle.  (+info)

Peripheral chemoreflex function in hyperoxia following ventilatory acclimatization to altitude. (46/1073)

After a period of ventilatory acclimatization to high altitude (VAH), a degree of hyperventilation persists after relief of the hypoxic stimulus. This is likely, in part, to reflect the altered acid-base status, but it may also arise, in part, from the development during VAH of a component of carotid body (CB) activity that cannot be entirely suppressed by hyperoxia. To test this hypothesis, eight volunteers undergoing a simulated ascent of Mount Everest in a hypobaric chamber were acutely exposed to 30 min of hyperoxia at various stages of acclimatization. For the second 10 min of this exposure, the subjects were given an infusion of the CB inhibitor, dopamine (3 microg. kg(-1). min(-1)). Although there was both a significant rise in ventilation (P < 0.001) and a fall in end-tidal PCO(2) (P < 0.001) with VAH, there was no progressive effect of dopamine infusion on these variables with VAH. These results do not support a role for CB in generating the persistent hyperventilation that remains in hyperoxia after VAH.  (+info)

Comparative effects of potassium chloride and bicarbonate on thiazide-induced reduction in urinary calcium excretion. (47/1073)

BACKGROUND: The chronic low-grade metabolic acidosis that occurs in various renal disorders and in normal people, and that is related both to dietary net acid load and age-related renal functional decline, may contribute to osteoporosis by increasing urine calcium excretion. Administration of potassium (K) alkali salts neutralizes acid and lowers urine calcium excretion. Urine calcium excretion also can be reduced by the administration of thiazide diuretics, which are often given with supplemental K to avoid hypokalemia. We determined whether the K alkali salt potassium bicarbonate (KHCO3) and the thiazide diuretic hydrochlorothiazide (HCTZ) combined is more effective in reducing urinary calcium than KHCO3 alone or HCTZ combined with the conventionally coadministered nonalkalinizing K salt potassium chloride (KCl). METHODS: Thirty-one healthy men and women aged 50 or greater were recruited for a four-week, double-blind, randomized study. After a baseline period of 10 days with three 24-hour urine and arterialized blood collections, subjects were randomized to receive either HCTZ (50 mg) plus potassium (60 mmol daily) as either the chloride or bicarbonate salt. Another 19 women received potassium bicarbonate (60 mmol) alone. After two weeks, triplicate collections of 24-hour urines and arterialized bloods were repeated. RESULTS: Urinary calcium excretion decreased significantly in all groups. KHCO3 alone and HCTZ + KCl induced similar decreases (-0.70 +/- 0.60 vs. -0.80 +/- 1. 0 mmol/day, respectively). Compared with those treatments, the combination of HCTZ + KHCO3 induced more than a twofold greater decrease in urinary calcium excretion (-1.8 +/- 1.2 mmol/day, P < 0. 05). Both HCTZ + KHCO3 and KHCO3 alone reduced net acid excretion significantly (P < 0.05) to values of less than zero. CONCLUSIONS: KHCO3 was superior to KCl as an adjunct to HCTZ, inducing a twofold greater reduction in urine calcium excretion, and completely neutralizing endogenous acid production so as to correct the pre-existing mild metabolic acidosis that an acid-producing diet usually induces in older people. Accordingly, for reducing urine calcium excretion in stone disease and osteoporosis, the combination of HCTZ + KHCO3 may be preferable to that of HCTZ + KCl.  (+info)

A Cl(-) cotransporter selective for NH(4)(+) over K(+) in glial cells of bee retina. (48/1073)

There appears to be a flux of ammonium (NH(4)(+)/NH(3)) from neurons to glial cells in most nervous tissues. In bee retinal glial cells, NH(4)(+)/NH(3) uptake is at least partly by chloride-dependant transport of the ionic form NH(4)(+). Transmembrane transport of NH(4)(+) has been described previously on transporters on which NH(4)(+) replaces K(+), or, more rarely, Na(+) or H(+), but no transport system in animal cells has been shown to be selective for NH(4)(+) over these other ions. To see if the NH(4)(+)-Cl(-) cotransporter on bee retinal glial cells is selective for NH(4)(+) over K(+) we measured ammonium-induced changes in intracellular pH (pH(i)) in isolated bundles of glial cells using a fluorescent indicator. These changes in pH(i) result from transmembrane fluxes not only of NH(4)(+), but also of NH(3). To estimate transmembrane fluxes of NH(4)(+), it was necessary to measure several parameters. Intracellular pH buffering power was found to be 12 mM. Regulatory mechanisms tended to restore intracellular [H(+)] after its displacement with a time constant of 3 min. Membrane permeability to NH(3) was 13 microm s(-1). A numerical model was used to deduce the NH(4)(+) flux through the transporter that would account for the pH(i) changes induced by a 30-s application of ammonium. This flux saturated with increasing [NH(4)(+)](o); the relation was fitted with a Michaelis-Menten equation with K(m) approximately 7 mM. The inhibition of NH(4)(+) flux by extracellular K(+) appeared to be competitive, with an apparent K(i) of approximately 15 mM. A simple standard model of the transport process satisfactorily described the pH(i) changes caused by various experimental manipulations when the transporter bound NH(4)(+) with greater affinity than K(+). We conclude that this transporter is functionally selective for NH(4)(+) over K(+) and that the transporter molecule probably has a greater affinity for NH(4)(+) than for K(+).  (+info)