Loading...
(1/3280) Prodigious substrate specificity of AAC(6')-APH(2"), an aminoglycoside antibiotic resistance determinant in enterococci and staphylococci.

BACKGROUND: High-level gentamicin resistance in enterococci and staphylococci is conferred by AAC(6')-APH(2"), an enzyme with 6'-N-acetyltransferase and 2"-O-phosphotransferase activities. The presence of this enzyme in pathogenic gram-positive bacteria prevents the successful use of gentamicin C and most other aminoglycosides as therapeutic agents. RESULTS: In an effort to understand the mechanism of aminoglycoside modification, we expressed AAC(6')-APH(2") in Bacillus subtilis. The purified enzyme is monomeric with a molecular mass of 57 kDa and displays both the expected aminoglycoside N-acetyltransferase and O-phosphotransferase activities. Structure-function analysis with various aminoglycosides substrates reveals an enzyme with broad specificity in both enzymatic activities, accounting for AAC(6')-APH(2")'s dramatic negative impact on clinical aminoglycoside therapy. Both lividomycin A and paromomycin, aminoglycosides lacking a 6'-amino group, were acetylated by AAC(6')-APH(2"). The infrared spectrum of the product of paromomycin acetylation yielded a signal consistent with O-acetylation. Mass spectral and nuclear magnetic resonance analysis of the products of neomycin phosphorylation indicated that phosphoryl transfer occurred primarily at the 3'-OH of the 6-aminohexose ring A, and that some diphosphorylated material was also present with phosphates at the 3'-OH and the 3"'-OH of ring D, both unprecedented observations for this enzyme. Furthermore, the phosphorylation site of lividomycin A was determined to be the 5"-OH of the pentose ring C. CONCLUSIONS: The bifunctional AAC(6')-APH(2") has the capacity to inactivate virtually all clinically important aminoglycosides through N- and O-acetylation and phosphorylation of hydroxyl groups. The extremely broad substrate specificity of this enzyme will impact on future development of aminoglycosides and presents a significant challenge for antibiotic design.  (+info)

(2/3280) The amino-terminal C/H1 domain of CREB binding protein mediates zta transcriptional activation of latent Epstein-Barr virus.

Latent Epstein-Barr virus (EBV) is maintained as a nucleosome-covered episome that can be transcriptionally activated by overexpression of the viral immediate-early protein, Zta. We show here that reactivation of latent EBV by Zta can be significantly enhanced by coexpression of the cellular coactivators CREB binding protein (CBP) and p300. A stable complex containing both Zta and CBP could be isolated from lytically stimulated, but not latently infected RAJI nuclear extracts. Zta-mediated viral reactivation and transcriptional activation were both significantly inhibited by coexpression of the E1A 12S protein but not by an N-terminal deletion mutation of E1A (E1ADelta2-36), which fails to bind CBP. Zta bound directly to two related cysteine- and histidine-rich domains of CBP, referred to as C/H1 and C/H3. These domains both interacted specifically with the transcriptional activation domain of Zta in an electrophoretic mobility shift assay. Interestingly, we found that the C/H3 domain was a potent dominant negative inhibitor of Zta transcriptional activation function. In contrast, an amino-terminal fragment containing the C/H1 domain was sufficient for coactivation of Zta transcription and viral reactivation function. Thus, CBP can stimulate the transcription of latent EBV in a histone acetyltransferase-independent manner mediated by the CBP amino-terminal C/H1-containing domain. We propose that CBP may regulate aspects of EBV latency and reactivation by integrating cellular signals mediated by competitive interactions between C/H1, C/H3, and the Zta activation domain.  (+info)

(3/3280) The histone acetylase PCAF is a phorbol-ester-inducible coactivator of the IRF family that confers enhanced interferon responsiveness.

Transcription factors of the interferon regulatory factor (IRF) family bind to the type I interferon (IFN)-responsive element (ISRE) and activate transcription from IFN-inducible genes. To identify cofactors that associate with IRF proteins, DNA affinity binding assays were performed with nuclear extracts prepared from tissue culture cells. The results demonstrated that the endogenous IRFs bound to the ISRE are complexed with the histone acetylases, PCAF, GCN5, and p300/CREB binding protein and that histone acetylase activities are accumulated on the IRF-ISRE complexes. By testing recombinant proteins, we show that PCAF directly binds to some but not all members of the IRF family through distinct domains of the two proteins. This interaction was functionally significant, since transfection of PCAF strongly enhanced IRF-1- and IRF-2-dependent promoter activities. Further studies showed that expression of PCAF and other histone acetylases was markedly induced in U937 cells upon phorbol ester treatment, which led to increased recruitment of PCAF to the IRF-ISRE complexes. Coinciding with the induction of histone acetylases, phorbol ester markedly enhanced IFN-alpha-stimulated gene expression in U937 cells. Supporting the role for PCAF in conferring IFN responsiveness, transfection of PCAF into U937 cells led to a large increase in IFN-alpha-inducible promoter activity. These results demonstrate that PCAF is a phorbol ester-inducible coactivator of the IRF proteins which contributes to the establishment of type I IFN responsiveness.  (+info)

(4/3280) A novel H2A/H4 nucleosomal histone acetyltransferase in Tetrahymena thermophila.

Recently, we reported the identification of a 55-kDa polypeptide (p55) from Tetrahymena macronuclei as a catalytic subunit of a transcription-associated histone acetyltransferase (HAT A). Extensive homology between p55 and Gcn5p, a component of the SAGA and ADA transcriptional coactivator complexes in budding yeast, suggests an immediate link between the regulation of chromatin structure and transcriptional output. Here we report the characterization of a second transcription-associated HAT activity from Tetrahymena macronuclei. This novel activity is distinct from complexes containing p55 and putative ciliate SAGA and ADA components and shares several characteristics with NuA4 (for nucleosomal H2A/H4), a 1.8-MDa, Gcn5p-independent HAT complex recently described in yeast. A key feature of both the NuA4 and Tetrahymena activities is their acetylation site specificity for lysines 5, 8, 12, and 16 of H4 and lysines 5 and 9 of H2A in nucleosomal substrates, patterns that are distinct from those of known Gcn5p family members. Moreover, like NuA4, the Tetrahymena activity is capable of activating transcription from nucleosomal templates in vitro in an acetyl coenzyme A-dependent fashion. Unlike NuA4, however, sucrose gradient analyses of the ciliate enzyme, following sequential denaturation and renaturation, estimate the molecular size of the catalytically active subunit to be approximately 80 kDa, consistent with the notion that a single polypeptide or a stable subcomplex is sufficient for this H2A/H4 nucleosomal HAT activity. Together, these data document the importance of this novel HAT activity for transcriptional activation from chromatin templates and suggest that a second catalytic HAT subunit, in addition to p55/Gcn5p, is conserved between yeast and Tetrahymena.  (+info)

(5/3280) In vivo and in vitro processing of the Bacillus subtilis transcript coding for glutamyl-tRNA synthetase, serine acetyltransferase, and cysteinyl-tRNA synthetase.

In Bacillus subtilis, the adjacent genes gltX, cysE, and cysS encoding respectively glutamyl-tRNA synthetase, serine acetyl-transferase, and cysteinyl-tRNA synthetase, are transcribed as an operon but a gltX probe reveals only the presence of a monocistronic gltX mRNA (Gagnon et al., 1994, J Biol Chem 269:7473-7482). The transcript of the gltX-cysE intergenic region contains putative alternative secondary structures forming a p-independent terminator or an antiterminator, and a conserved sequence (T-box) found in the leader of most aminoacyl-tRNA synthetase and many amino acid biosynthesis genes in B. subtilis and in other Gram-positive eubacteria. The transcription of these genes is initiated 45 nt upstream from the first codon of gltX and is under the control of a sigmaA-type promoter. Analysis of the in vivo transcript of this operon revealed a cleavage site immediately downstream from the p-independent terminator structure. In vitro transcription analysis, using RNA polymerases from Escherichia coli, B. subtilis, and that encoded by the T7 phage, in the presence of various RNase inhibitors, shows the same cleavage. This processing generates mRNAs whose 5'-end half-lives differ by a factor of 2 in rich medium, and leaves putative secondary structures at the 3' end of the gltX transcript and at the 5' end of the cysE/S mRNA, which may be involved in the stabilization of these mRNAs. By its mechanism and its position, this cleavage differs from that of the other known transcripts encoding aminoacyl-tRNA synthetases in B. subtilis.  (+info)

(6/3280) Overexpression of spermidine/spermine N1-acetyltransferase under the control of mouse metallothionein I promoter in transgenic mice: evidence for a striking post-transcriptional regulation of transgene expression by a polyamine analogue.

We recently generated a transgenic mouse line overexpressing spermidine/spermine N1-acetyltransferase (SSAT) gene under its own promoter. The tissue polyamine pools of these animals were profoundly affected and the mice were hairless from early age. We have now generated another transgenic-mouse line overexpressing the SSAT gene under the control of a heavy-metal-inducible mouse metallothionein I (MT) promoter. Even in the absence of heavy metals, changes in the tissue polyamine pools indicated that a marked activation of polyamine catabolism had occurred in the transgenic animals. As with the SSAT transgenic mice generated previously, the mice of the new line (MT-SSAT) suffered permanent hair loss, but this occurred considerably later than in the previous SSAT transgenic animals. Liver was the most affected tissue in the MT-SSAT transgenic animals, revealed by putrescine overaccumulation, significant decrease in spermidine concentration and >90% reduction in the spermine pool. Even though hepatic SSAT mRNA accumulated to massive levels in non-induced transgenic animals, SSAT activity was only moderately elevated. Administration of ZnSO4 further elevated the level of hepatic SSAT message and induced enzyme activity, but not more than 2- to 3-fold. Treatment of the transgenic animals with the polyamine analogue N1,N11-diethylnorspermine (DENSPM) resulted in an immense induction, more than 40000-fold, of enzyme activity in the liver of transgenic animals, and minor changes in the SSAT mRNA level. Liver spermidine and spermine pools were virtually depleted within 1-2 days in response to the treatment with the analogue. The treatment also resulted in a marked mortality (up to 60%) among the transgenic animals which showed ultrastructural changes in the liver, most notably mitochondrial swelling, one of the earliest signs of cell injury. These results indicated that, even without its own promoter, SSAT is powerfully induced by the polyamine analogue through a mechanism that appears to involve a direct translational and/or heterogenous nuclear RNA processing control. It is likewise significant that overexpression of SSAT renders the animals extremely sensitive to polyamine analogues.  (+info)

(7/3280) Virus infection leads to localized hyperacetylation of histones H3 and H4 at the IFN-beta promoter.

Transcriptional activation of the human interferon-beta (IFN-beta) gene by virus infection requires the assembly of a higher order nucleoprotein complex, the enhanceosome, which consists of the transcriptional activators NF-kappa B (p50/p65), ATF-2/c-jun, IRF-3 and IRF-7, architectural protein HMGI(Y), and the coactivators p300 and CBP. In this report, we show that virus infection of cells results in a dramatic hyperacetylation of histones H3 and H4 that is localized to the IFN-beta promoter. Furthermore, expressing a truncated version of IRF-3, which lacks a p300/CBP interaction domain, suppresses both histone hyperacetylation and activation of the IFN-beta gene. Thus, coactivator-mediated localized hyperacetylation of histones may play a crucial role in inducible gene expression.  (+info)

(8/3280) A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity.

Nucleosomal histone modification is believed to be a critical step in the activation of RNA polymerase II-dependent transcription. p300/CBP and PCAF histone acetyltransferases (HATs) are coactivators for several transcription factors, including nuclear hormone receptors, p53, and Stat1alpha, and participate in transcription by forming an activation complex and by promoting histone acetylation. The adenoviral E1A oncoprotein represses transcriptional signaling by binding to p300/CBP and displacing PCAF and p/CIP proteins from the complex. Here, we show that E1A directly represses the HAT activity of both p300/CBP and PCAF in vitro and p300-dependent transcription in vivo. Additionally, E1A inhibits nucleosomal histone modifications by the PCAF complex and blocks p53 acetylation. These results demonstrate the modulation of HAT activity as a novel mechanism of transcriptional regulation.  (+info)