N-Glycan processing by a lepidopteran insect alpha1,2-mannosidase. (65/1610)

Protein glycosylation pathways are relatively poorly characterized in insect cells. As part of an overall effort to address this problem, we previously isolated a cDNA from Sf9 cells that encodes an insect alpha1,2-mannosidase (SfManI) which requires calcium and is inhibited by 1-deoxymannojirimycin. In the present study, we have characterized the substrate specificity of SfManI. A recombinant baculovirus was used to express a GST-tagged secreted form of SfManI which was purified from the medium using an immobilized glutathione column. The purified SfManI was then incubated with oligosaccharide substrates and the resulting products were analyzed by HPLC. These analyses showed that SfManI rapidly converts Man(9)GlcNAc(2)to Man(6)Glc-NAc(2)isomer C, then more slowly converts Man(6)GlcNAc(2)isomer C to Man(5)GlcNAc(2). The slow step in the processing of Man(9)GlcNAc(2)to Man(5)GlcNAc(2)by SfManI is removal of the alpha1,2-linked mannose on the middle arm of Man(9)GlcNAc(2). In this respect, SfManI is similar to mammalian alpha1,2-mannosidases IA and IB. However, additional HPLC and(1)H-NMR analyses demonstrated that SfManI converts Man(9)GlcNAc(2)to Man(5)GlcNAc(2)primarily through Man(7)GlcNAc(2)isomer C, the archetypal Man(9)GlcNAc(2)missing the lower arm alpha1,2-linked mannose residues. In this respect, SfManI differs from mammalian alpha1,2-mannosidases IA and IB, and is the first alpha1,2-mannosidase directly shown to produce Man(7)GlcNAc(2)isomer C as a major processing intermediate.  (+info)

The pgdA gene encodes for a peptidoglycan N-acetylglucosamine deacetylase in Streptococcus pneumoniae. (66/1610)

Analytical work on the fractionation of the glycan strands of Streptococcus pneumoniae cell wall has led to the observation that an unusually high proportion of hexosamine units (over 80% of the glucosamine and 10% of the muramic acid residues) was not N-acetylated, explaining the resistance of the peptidoglycan to the hydrolytic action of lysozyme, a muramidase that cleaves in the glycan backbone. A gene, pgdA, was identified as encoding for the peptidoglycan N-acetylglucosamine deacetylase A with amino acid sequence similarity to fungal chitin deacetylases and rhizobial NodB chitooligosaccharide deacetylases. Pneumococci in which pgdA was inactivated by insertion duplication mutagenesis produced fully N-acetylated glycan and became hypersensitive to exogenous lysozyme in the stationary phase of growth. The pgdA gene may contribute to pneumococcal virulence by providing protection against host lysozyme, which is known to accumulate in high concentrations at infection sites.  (+info)

Complement activation after oxidative stress: role of the lectin complement pathway. (67/1610)

The complement system plays an important role in mediating tissue injury after oxidative stress. The role of mannose-binding lectin (MBL) and the lectin complement pathway (LCP) in mediating complement activation after endothelial oxidative stress was investigated. iC3b deposition on hypoxic (24 hours; 1% O(2))/reoxygenated (3 hours; 21% O(2)) human endothelial cells was attenuated by N-acetyl-D-glucosamine or D-mannose, but not L-mannose, in a dose-dependent manner. Endothelial iC3b deposition after oxidative stress was also attenuated in MBL-deficient serum. Novel, functionally inhibitory, anti-human MBL monoclonal antibodies attenuated MBL-dependent C3 deposition on mannan-coated plates in a dose-dependent manner. Treatment of human serum with anti-MBL monoclonal antibodies inhibited MBL and C3 deposition after endothelial oxidative stress. Consistent with our in vitro findings, C3 and MBL immunostaining throughout the ischemic area at risk increased during rat myocardial reperfusion in vivo. These data suggest that the LCP mediates complement activation after tissue oxidative stress. Inhibition of MBL may represent a novel therapeutic strategy for ischemia/reperfusion injury and other complement-mediated disease states.  (+info)

Chitin oligosaccharides as candidate patterning agents in zebrafish embryogenesis. (68/1610)

In this work we investigate the possible function of N-acetyl-chitooligosaccharides (NACOs) produced during zebrafish (Danio rerio) development. First, we show that NACOs are synthesized in vivo during early embryogenesis in the zebrafish. Second, we demonstrate that injection of a pure bacterial chitinase into one-cell stage embryos elicits developmental defects in which the posterior trunk and tail of developing embryo are severely affected. In addition, an endogenous chitinase activity detected both intra- and extracellularly is described, suggesting that cells may secrete it into the extracellular space. Moreover, this compartmentalization appears to be functionally relevant as inhibition of the extracellular, but not the intracellular, endogenous chitinase activity causes morphological defects similar to those seen in embryos injected with chitinase 63. Finally, analysis of the expression of the zebrafish ZDG42 gene, which has been suggested to be involved in synthesis of NACOs, is described. Transcripts are detected from late blastula stage, during gastrulation, and move as an anterior-posterior wave of expression in adaxial mesoderm during somitogenesis.  (+info)

The O-GlcNAc transferase gene resides on the X chromosome and is essential for embryonic stem cell viability and mouse ontogeny. (69/1610)

Nuclear and cytoplasmic protein glycosylation is a widespread and reversible posttranslational modification in eukaryotic cells. Intracellular glycosylation by the addition of N-acetylglucosamine (GlcNAc) to serine and threonine is catalyzed by the O-GlcNAc transferase (OGT). This "O-GlcNAcylation" of intracellular proteins can occur on phosphorylation sites, and has been implicated in controlling gene transcription, neurofilament assembly, and the emergence of diabetes and neurologic disease. To study OGT function in vivo, we have used gene-targeting approaches in male embryonic stem cells. We find that OGT mutagenesis requires a strategy that retains an intact OGT gene as accomplished by using Cre-loxP recombination, because a deletion in the OGT gene results in loss of embryonic stem cell viability. A single copy of the OGT gene is present in the male genome and resides on the X chromosome near the centromere in region D in the mouse spanning markers DxMit41 and DxMit95, and in humans at Xq13, a region associated with neurologic disease. OGT RNA expression in mice is comparably high among most cell types, with lower levels in the pancreas. Segregation of OGT alleles in the mouse germ line with ZP3-Cre recombination in oocytes reveals that intact OGT alleles are required for completion of embryogenesis. These studies illustrate the necessity of conditional gene-targeting approaches in the mutagenesis and study of essential sex-linked genes, and indicate that OGT participation in intracellular glycosylation is essential for embryonic stem cell viability and for mouse ontogeny.  (+info)

Control of bisecting GlcNAc addition to N-linked sugar chains. (70/1610)

In the present study, experimental control of the formation of bisecting GlcNAc was investigated, and the competition between beta-1,4-GalT (UDP-galactose:N-acetylglucosamine beta-1, 4-galactosyltransferase) and GnT-III (UDP-N-acetylglucosamine:beta-d-mannoside beta-1, 4-N-acetylglucosaminyltransferase) was examined. We isolated a beta-1,4-GalT-I single knockout human B cell clone producing monoclonal IgM and several transfectant clones that overexpressed beta-1,4-GalT-I or GnT-III. In the beta-1,4-GalT-I-single knockout cells, the extent of bisecting GlcNAc addition to the sugar chains of IgM was increased, where beta-1,4-GalT activity was reduced to about half that in the parental cells, and GnT-III activity was unaltered. In the beta-1,4-GalT-I transfectants, the extent of bisecting GlcNAc addition was reduced although GnT-III activity was not altered significantly. In the GnT-III transfectants, the extent of bisecting GlcNAc addition increased along with the increase in levels of GnT-III activity. The extent of bisecting GlcNAc addition to the sugar chains of IgM was significantly correlated with the level of intracellular beta-1,4-GalT activity relative to that of GnT-III. These results were interpreted as indicating that beta-1, 4-GalT competes with GnT-III for substrate in the cells.  (+info)

Structure of a two-domain chitotriosidase from Serratia marcescens at 1.9-A resolution. (71/1610)

In this paper, we describe the structure of chitinase B from Serratia marcescens, which consists of a catalytic domain with a TIM-barrel fold and a 49-residue C-terminal chitin-binding domain. This chitinase is the first structure of a bacterial exochitinase, and it represents one of only a few examples of a glycosyl hydrolase structure having interacting catalytic and substrate-binding domains. The chitin-binding domain has exposed aromatic residues that contribute to a 55-A long continuous aromatic stretch extending into the active site. Binding of chitin oligomers is blocked beyond the -3 subsite, which explains why the enzyme has chitotriosidase activity and degrades the chitin chain from the nonreducing end. Comparison of the chitinase B structure with that of chitinase A explains why these enzymes act synergistically in the degradation of chitin.  (+info)

Comparative study of the asparagine-linked sugar chains of human lipocalin-type prostaglandin D synthase purified from urine and amniotic fluid, and recombinantly expressed in Chinese hamster ovary cells. (72/1610)

Lipocalin-type prostaglandin D synthase (L-PGDS) is a highly glycosylated member of the lipocalin gene family and is secreted into various human body fluids. We comparatively analyzed the structures of asparagine-linked sugar chains of human L-PGDS produced by recombinant Chinese hamster ovary cells and naturally occurring human urine and amniotic fluid. After the sugar chains were liberated by hydrazinolysis followed by N-acetylation, they were derivatized with 2-aminobenzamide. All of the sugar chains of three L-PGDSs occur as biantennary complex-type sugar chains. Most of the sugar chains of three samples were fucosylated on the inner most N-acetylglucosamine residue. Although the sugar chains of the recombinant L-PGDS do not contain any bisecting N-acetylglucosamine residues, 58% and 34% of the fucosylated-sugar chains of amniotic fluid and urine L-PGDSs, respectively, contain bisecting N-acetylglucosamine residues. The sialic acid residues occur solely as Siaalpha2-->3Gal groups of the recombinant L-PGDS; the sialic acid residues of other L-PGDS occur as both Siaalpha2-->3Gal and Siaalpha2-->6Gal groups. Variations in L-PGDS glycosylation may prove useful as markers to further elucidate the role of L-PGDS glycoforms in different tissues.  (+info)