(1/8871) Inhibitory innervation of cat sphincter of Oddi.

1 Electrical stimulation with trains of 0.1-0.2 ms pulses of the cat isolated sphincter of Oddi inhibited the spontaneous contractile activity and lowered base-line tension considerably. A contraction usually followed the period of stimulation. 2 These inhibitory effects were prevented by tetrodotoxin 0.1-0.5 mug/ml but were not reduced by hexamethonilm, morphine, or blockade of alpha- or beta-adrenoreceptors of cholinoceptors with phenoxy-benzamine propranolol or atropine, respectively. 3 Adenosine-5'-triphosphate (ATP) and adenosine-5'-diphosphate (ADP) inhibited the spontaneous sphincter activity and caused relaxation thus mimicking the effects of the C-terminal octapeptide of cholecystokinin (C8-CCK), isoprenaline and prostaglandin E1 and E2. 4 ATP alone (greater than 100 mug/ml) or ATP (greater than 10 mug/ml) plus dipyridamole (1 mug/ml), relaxed the sphincter to the same degrees as did the field stimulation. 5 In sphincter maximally contracted by acetylcholine, the effect of stimulation was more marked than that recorded in uncontracted preparations. 6 The present findings suggest that the sphincter of Oddi receives inhibitory nerves that are neither cholinergic nor adrenergic.  (+info)

(2/8871) A comparison of affinity constants for muscarine-sensitive acetylcholine receptors in guinea-pig atrial pacemaker cells at 29 degrees C and in ileum at 29 degrees C and 37 degrees C.

1 The affinity of 17 compounds for muscarine-sensitive acetylcholine receptors in atrial pacemaker cells and ileum of the guinea-pig has been measured at 29 degrees C in Ringer-Locke solution. Measurements were also made at 37 degrees C with 7 of them. 2 Some of the compounds had much higher affinity for the receptors in the ileum than for those in the atria. For the most selective compound, 4-diphenylacetoxy-N-methylpiperidine methiodide, the difference was approximately 20-fold. The receptors in the atria are therefore different the structure from those in the ileum. 3 The effect of temperature on affinity are not the same for all the compounds, tested indicating different enthalpies and entropies of adsorption and accounting for some of the difficulty experienced in predicting the affinity of new compounds.  (+info)

(3/8871) Modulation of long-term synaptic depression in visual cortex by acetylcholine and norepinephrine.

In a slice preparation of rat visual cortex, we discovered that paired-pulse stimulation (PPS) elicits a form of homosynaptic long-term depression (LTD) in the superficial layers when carbachol (CCh) or norepinephrine (NE) is applied concurrently. PPS by itself, or CCh and NE in the absence of synaptic stimulation, produced no lasting change. The LTD induced by PPS in the presence of NE or CCh is of comparable magnitude with that obtained with prolonged low-frequency stimulation (LFS) but requires far fewer stimulation pulses (40 vs 900). The cholinergic facilitation of LTD was blocked by atropine and pirenzepine, suggesting involvement of M1 receptors. The noradrenergic facilitation of LTD was blocked by urapidil and was mimicked by methoxamine, suggesting involvement of alpha1 receptors. beta receptor agonists and antagonists were without effect. Induction of LTD by PPS was inhibited by NMDA receptor blockers (completely in the case of NE; partially in the case of CCh), suggesting that one action of the modulators is to control the gain of NMDA receptor-dependent homosynaptic LTD in visual cortex. We propose that this is a mechanism by which cholinergic and noradrenergic inputs to the neocortex modulate naturally occurring receptive field plasticity.  (+info)

(4/8871) Endothelial function in Marfan syndrome: selective impairment of flow-mediated vasodilation.

BACKGROUND: The cardiovascular complications of Marfan syndrome arise due to alterations in the structural and functional properties of fibrillin, a constituent of vascular connective tissues. Fibrillin-containing microfibrils are closely associated with arterial endothelial cells, indicating a possible functional role for fibrillin in the endothelium. Plasma concentrations of endothelial cell products are elevated in Marfan subjects, which indirectly indicates endothelial dysfunction. This study directly assessed flow- and agonist-mediated endothelium-dependent brachial artery reactivity in Marfan subjects. METHODS AND RESULTS: In 20 Marfan and 20 control subjects, brachial artery diameter, blood flow, and blood pressure were measured by ultrasonic wall tracking, Doppler ultrasound, and photoplethysmography, respectively. Measurements were taken during hand hyperemia (a stimulus for endothelium-derived nitric oxide [NO] release in the upstream brachial artery) and after sublingual administration of the endothelium-independent vasodilator nitroglycerin. In 9 Marfan and 6 control subjects, the above parameters were also assessed during intra-arterial infusions of acetylcholine and bradykinin (agonists that stimulate NO production) and NG-monomethyl-L-arginine (L-NMMA, an inhibitor of NO production). Flow-mediated responses differed markedly between Marfan and control subjects (-1.6+/-3.5% versus 6. 50+/-4.1%, respectively; P<0.0001), whereas nitroglycerin produced similar vasodilation (14.2+/-5.7% versus 15.2+/-7.8%; P=NS). Agonist-induced vasodilation to incremental intra-arterial infusions of acetylcholine and bradykinin were not significantly different between Marfan and control subjects, and intra-arterial L-NMMA produced similar reductions in brachial artery diameter in both groups. CONCLUSIONS: These data demonstrate impaired flow-mediated but preserved agonist-mediated endothelium-dependent vasodilation in Marfan subjects and suggest preservation of basal NO release. Selective loss of flow-mediated dilation suggests a role for fibrillin in endothelial cell mechanotransduction.  (+info)

(5/8871) Adrenoreceptors of the guinea-pig urinary bladder.

1 Adrenaline, noradrenaline and isoprenaline (5 mug/ml) did not affect the resting tone of the isolated urinary bladder of the guinea-pig. 2 The catecholamines (1-2 mug/ml) inhibited neuronally evoked contractions at various stimulation frequencies; the inhibition was maximum at 2 Hz and minimum at 50 Hz. Isoprenaline produced maximum inhibition. 3 Propranolol (0.5 mug/ml) completely blocked the catecholamine-induced inhibition at all the frequencies employed. The concentration-response curves of isoprenaline at 2, 10 and 50 Hz were characteristically shifted by propranolol (50 ng/ml). Phenoxybenzamine (0.2 mug/ml) was totally ineffective. 4 In some experiments adrenaline significantly raised the tone of the bladder exposed to propranolol; this effect could be blocked by phenoxybenzamine. 5 Acetylcholine-induced bladder contractions were inhibited by adrenaline (2 mug/ml); the inhibition was completely blocked by propranolol (0.5 mug/ml). 6 The results indicate the presence of an inhibitory beta-adrenoceptor and suggest the possibility of an excitatory alpha-adrenoceptor in guinea-pig urinary bladder.  (+info)

(6/8871) Calcium responses induced by acetylcholine in submucosal arterioles of the guinea-pig small intestine.

1. Calcium responses induced by brief stimulation with acetylcholine (ACh) were assessed from the fluorescence changes in fura-2 loaded submucosal arterioles of the guinea-pig small intestine. 2. Initially, 1-1.5 h after loading with fura-2 (fresh tissues), ACh increased [Ca2+]i in a concentration-dependent manner. This response diminished with time, and finally disappeared in 2-3 h (old tissues). 3. Ba2+ elevated [Ca2+]i to a similar extent in both fresh and old tissues. ACh further increased the Ba2+-elevated [Ca2+]i in fresh tissues, but reduced it in old tissues. Responses were not affected by either indomethacin or nitroarginine. 4. In fresh mesenteric arteries, mechanical removal of endothelial cells abolished the ACh-induced increase in [Ca2+]i, with no alteration of [Ca2+]i at rest and during elevation with Ba2+. 5. In the presence of indomethacin and nitroarginine, high-K+ solution elevated [Ca2+]i in both fresh and old tissues. Subsequent addition of ACh further increased [Ca2+]i in fresh tissues without changing it in old tissues. 6. Proadifen, an inhibitor of the enzyme cytochrome P450 mono-oxygenase, inhibited the ACh-induced changes in [Ca2+]i in both fresh and Ba2+-stimulated old tissues. It also inhibited the ACh-induced hyperpolarization. 7. In fresh tissues, the ACh-induced Ca2+ response was not changed by apamin, charybdotoxin (CTX), 4-aminopyridine (4-AP) or glibenclamide. In old tissues in which [Ca2+]i had previously been elevated with Ba2+, the ACh-induced Ca2+ response was inhibited by CTX but not by apamin, 4-AP or glibenclamide. 8. It is concluded that in submucosal arterioles, ACh elevates endothelial [Ca2+]i and reduces muscular [Ca2+]i, probably through the hyperpolarization of endothelial or smooth muscle membrane by activating CTX-sensitive K+ channels.  (+info)

(7/8871) Somatostatin induces hyperpolarization in pancreatic islet alpha cells by activating a G protein-gated K+ channel.

Somatostatin inhibits glucagon-secretion from pancreatic alpha cells but its underlying mechanism is unknown. In mouse alpha cells, we found that somatostatin induced prominent hyperpolarization by activating a K+ channel, which was unaffected by tolbutamide but prevented by pre-treating the cells with pertussis toxin. The K+ channel was activated by intracellular GTP (with somatostatin), GTPgammaS or Gbetagamma subunits. It was thus identified as a G protein-gated K+ (K(G)) channel. RT-PCR and immunohistochemical analyses suggested the K(G) channel to be composed of Kir3.2c and Kir3.4. This study identified a novel ionic mechanism involved in somatostatin-inhibition of glucagon-secretion from pancreatic alpha cells.  (+info)

(8/8871) Inhibition of endothelium-dependent hyperpolarization by endothelial prostanoids in guinea-pig coronary artery.

1. In smooth muscle of the circumflex coronary artery of guinea-pig, acetylcholine (ACh, 10(-6) M) produced an endothelium-dependent hyperpolarization consisting of two components. An initial component that occurs in the presence of ACh and a slow component that developed after ACh had been withdrawn. Each component of the hyperpolarization was accompanied by an increase in membrane conductance. 2. Indomethacin (5 x 10(-6) M) or diclofenac (10(-6) M), both inhibitors of cyclooxygenase, abolished only the slow hyperpolarization. The initial hyperpolarization was not inhibited by diclofenac nor by nitroarginine, an inhibitor of nitric oxide synthase. 3. Both components of the ACh-induced hyperpolarization were abolished in the presence of atropine (10(-6) M) or high-K solution ([K+]0 = 29.4 mM). 4. The interval between ACh-stimulation required to generate an initial hyperpolarization of reproducible amplitude was 20 min or greater, but it was reduced to less than 5 min after inhibiting cyclooxygenase activity. Conditioning stimulation of the artery with substance P (10(-7) M) also caused a long duration (about 20 min) inhibition of the ACh-response. 5. The amplitude of the hyperpolarization generated by Y-26763, a K+-channel opener, was reproducible within 10 min after withdrawal of ACh. 6. Exogenously applied prostacyclin (PGI2) hyperpolarized the membrane and reduced membrane resistance in concentrations over 2.8 x 10(-9)M. 7. At concentrations below threshold for hyperpolarization and when no alteration of membrane resistance occurred, PGI2 inhibited the initial component of the ACh-induced hyperpolarization. 8. It is concluded that endothelial prostanoids, possibly PGI2, have an inhibitory action on the release of endothelium-derived hyperpolarizing factor.  (+info)