Factor-specific modulation of CREB-binding protein acetyltransferase activity. (17/6505)

CREB-binding proteins (CBP) and p300 are essential transcriptional coactivators for a large number of regulated DNA-binding transcription factors, including CREB, nuclear receptors, and STATs. CBP and p300 function in part by mediating the assembly of multiprotein complexes that contain additional cofactors such as p300/CBP interacting protein (p/CIP), a member of the p160/SRC family of coactivators, and the p300/CBP associated factor p/CAF. In addition to serving as molecular scaffolds, CBP and p300 each possess intrinsic acetyltransferase activities that are required for their function as coactivators. Here we report that the adenovirus E1A protein inhibits the acetyltransferase activity of CBP on binding to the C/H3 domain, whereas binding of CREB, or a CREB/E1A fusion protein to the KIX domain, fails to inhibit CBP acetyltransferase activity. Surprisingly, p/CIP can either inhibit or stimulate CBP acetyltransferase activity depending on the specific substrate evaluated and the functional domains present in the p/CIP protein. While the CBP interaction domain of p/CIP inhibits acetylation of histones H3, H4, or high mobility group by CBP, it enhances acetylation of other substrates, such as Pit-1. These observations suggest that the acetyltransferase activities of CBP/p300 and p/CAF can be differentially modulated by factors binding to distinct regions of CBP/p300. Because these interactions are likely to result in differential effects on the coactivator functions of CBP/p300 for different classes of transcription factors, regulation of CBP/p300 acetyltransferase activity may represent a mechanism for integration of diverse signaling pathways.  (+info)

Genetic analysis of the mouse X inactivation center defines an 80-kb multifunction domain. (18/6505)

Dosage compensation in mammals occurs by X inactivation, a silencing mechanism regulated in cis by the X inactivation center (Xic). In response to developmental cues, the Xic orchestrates events of X inactivation, including chromosome counting and choice, initiation, spread, and establishment of silencing. It remains unclear what elements make up the Xic. We previously showed that the Xic is contained within a 450-kb sequence that includes Xist, an RNA-encoding gene required for X inactivation. To characterize the Xic further, we performed deletional analysis across the 450-kb region by yeast-artificial-chromosome fragmentation and phage P1 cloning. We tested Xic deletions for cis inactivation potential by using a transgene (Tg)-based approach and found that an 80-kb subregion also enacted somatic X inactivation on autosomes. Xist RNA coated the autosome but skipped the Xic Tg, raising the possibility that X chromosome domains escape inactivation by excluding Xist RNA binding. The autosomes became late-replicating and hypoacetylated on histone H4. A deletion of the Xist 5' sequence resulted in the loss of somatic X inactivation without abolishing Xist expression in undifferentiated cells. Thus, Xist expression in undifferentiated cells can be separated genetically from somatic silencing. Analysis of multiple Xic constructs and insertion sites indicated that long-range Xic effects can be generalized to different autosomes, thereby supporting the feasibility of a Tg-based approach for studying X inactivation.  (+info)

A study of the native-denatured (N in equilibrium with D) transition in lysozyme. II. Kinetic analysis of protease digestion. (19/6505)

Kinetic analyses of the protease digestion of several chemical derivatives of lysozyme [EC 3.2.1.17] showed that only the D(denatured) state of the protein is digested and that the reaction velocity is proportional to the equilibrium constant (KD) of the N in equilibrium with D transition of the protein. Alteration of the net charge of lysozyme by acetylation caused a shift of the N in equilibrium with D transition to the right (ten-fold increase in KD compared to that of native enzyme). Both the formation of a lysozyme-inhibitor complex and the introduction of a covalent bond in the lysozyme molecule restricted the transition. The magnitude of the N in equilibrium with D transition is related to the susceptibility of lysozyme to protease digestion and it is estimated that the N in equilibrium with D transition in proteins is generally important in the intracellular catabolism of proteins.  (+info)

Active transgenes in zebrafish are enriched in acetylated histone H4 and dynamically associate with RNA Pol II and splicing complexes. (20/6505)

We have investigated the functional organization of active and silent integrated luciferase transgenes in zebrafish, with the aim of accounting for the variegation of transgene expression in this species. We demonstrate the enrichment of transcriptionally active transgenes in acetylated histone H4 and the dynamic association of the transgenes with splicing factor SC35 and RNA Pol II. Analysis of interphase nuclei and extended chromatin fibers by immunofluorescence and in situ hybridization reveals a co-localization of transgenes with acetylated H4 in luciferase-expressing animals only. Enrichment of expressed transgenes in acetylated H4 is further demonstrated by their co-precipitation from chromatin using anti-acetylated H4 antibodies. Little correlation exists, however, between the level of histone acetylation and the degree of transgene expression. In transgene-expressing zebrafish, most transgenes co-localize with Pol II and SC35, whereas no such association occurs in non-expressing individuals. Inhibition of Pol II abolishes transgene expression and disrupts association of transgenes with SC35, although inactivated transgenes remains enriched in acetylated histones. Exposure of embryos to the histone deacetylation inhibitor TSA induces expression of most silent transgenes. Chromatin containing activated transgenes becomes enriched in acetylated histones and the transgenes recruit SC35 and Pol II. The results demonstrate a correlation between H4 acetylation and transgene activity, and argue that active transgenes dynamically recruit splicing factors and Pol II. The data also suggest that dissociation of splicing factors from transgenes upon Pol II inhibition is not a consequence of changes in H4 acetylation.  (+info)

A non-isotopic assay for histone deacetylase activity. (21/6505)

Inhibitors of histone deacetylase (HD) bear great potential as new drugs due to their ability to modulate transcription and to induce apoptosis or differentiation in cancer cells. To study the activity of HD and the effect of potential inhibitors in vitro so far only radio-active assays have existed. For the search of new inhibitors and for the use in HD identification and purification we established a simple, non-radioactive assay that allows screening of large numbers of compounds. The assay is based on an aminocoumarin derivative of an Omega-acetylated lysine as enzyme substrate.  (+info)

Specific acetylation of chromosomal protein HMG-17 by PCAF alters its interaction with nucleosomes. (22/6505)

Nonhistone chromosomal proteins HMG-14 and HMG-17 are closely related nucleosomal binding proteins that unfold the higher-order chromatin structure, thereby enhancing the transcription and replication potential of chromatin. Here we report that PCAF, a transcription coactivator with intrinsic histone acetyltransferase activity, specifically acetylates HMG-17 but not HMG-14. Using mass spectrum sequence analysis, we identified the lysine at position 2 as the predominant site acetylated by PCAF. Lysine 2 is a prominent acetylation site in vivo, suggesting that this PCAF-mediated acetylation is physiologically relevant. Experiments with HMG-17 deletion mutants and competition studies with various protein fragments indicate that the specific acetylation of HMG-17 is not determined solely by the primary sequence near the acetylation site. By equilibrium dialysis we demonstrated that acetylation reduces the affinity of HMG-17 to nucleosome cores. In addition, we found that the binding of HMG-14 and HMG-17 to nucleosome cores inhibits the PCAF-mediated acetylation of histone H3. Thus, the presence of HMG-14 and HMG-17 affects the ability of PCAF to acetylate chromatin, while the acetylation of HMG-17 reduces its binding affinity to chromatin. Conceivably, in HMG-17-containing chromatin, acetylation of HMG-17 precedes the acetylation of histones.  (+info)

Cooperation between phosphorylation and acetylation processes in transcriptional control. (23/6505)

We previously reported that the activation of the M promoter of the human choline acetyltransferase (ChAT) gene by butyrate and trapoxin in transfected CHP126 cells is blocked by PD98059, a specific mitogen-activated protein kinase kinase (MEK) inhibitor (E. Espinos and M. J. Weber, Mol. Brain Res. 56:118-124, 1998). We now report that the transcriptional effects of histone deacetylase inhibitors are mediated by an H7-sensitive serine/threonine protein kinase. Activation of the ChAT promoter by butyrate and trapoxin was blocked by 50 microM H7 in both transient- and stable-transfection assays. Overexpression of p300, a coactivator protein endowed with histone acetyltransferase activity, stimulated the ChAT promoter and had a synergistic effect on butyrate treatment. These effects were blocked by H7 and by overexpressed adenovirus E1A 12S protein. Moreover, both H7 and PD98059 suppressed the activation of the Rous sarcoma virus (RSV) and simian virus 40 promoters by butyrate in transfection experiments. Similarly, the induction of the cellular histone H1(0) gene by butyrate in CHP126 cells was blocked by H7 and by PD98059. Previous data (L. Cuisset, L. Tichonicky, P. Jaffray, and M. Delpech, J. Biol. Chem. 272:24148-24153, 1997) showed that the induction of the H1(0) gene by butyrate is blocked by okadaic acid, an inhibitor of protein phosphatases. We now show that the activation of the ChAT and RSV promoters by butyrate in transfected CHP126 cells is also blocked by 200 nM okadaic acid. Western blotting and in vivo metabolic labeling experiments showed that butyrate has a biphasic effect on histone H3 phosphorylation, i.e., depression for up to 16 h followed by stimulation. The data thus strongly suggest that the transcriptional effects of histone deacetylase inhibitors are mediated through the activation of MEK1 and of an H7-sensitive protein kinase in addition to protein phosphatases.  (+info)

CREB-Binding protein acetylates hematopoietic transcription factor GATA-1 at functionally important sites. (24/6505)

The transcription factor GATA-1 is a key regulator of erythroid-cell differentiation and survival. We have previously shown that the transcriptional cofactor CREB-binding protein (CBP) binds to the zinc finger domain of GATA-1, markedly stimulates the transcriptional activity of GATA-1, and is required for erythroid differentiation. Here we report that CBP, but not p/CAF, acetylates GATA-1 at two highly conserved lysine-rich motifs present at the C-terminal tails of both zinc fingers. Using [3H]acetate labelling experiments and anti-acetyl lysine immunoprecipitations, we show that GATA-1 is acetylated in vivo at the same sites acetylated by CBP in vitro. In addition, we show that CBP stimulates GATA-1 acetylation in vivo in an E1A-sensitive manner, thus establishing a correlation between acetylation and transcriptional activity of GATA-1. Acetylation in vitro did not alter the ability of GATA-1 to bind DNA, and mutations in either motif did not affect DNA binding of GATA-1 expressed in mammalian cells. Since certain functions of GATA-1 are revealed only in an erythroid environment, GATA-1 constructs were examined for their ability to trigger terminal differentiation when introduced into a GATA-1-deficient erythroid cell line. We found that mutations in either acetylation motif partially impaired the ability of GATA-1 to induce differentiation while mutations in both motifs abrogated it completely. Taken together, these data indicate that CBP is an important cofactor for GATA-1 and suggest a novel mechanism in which acetylation by CBP regulates GATA-1 activity in erythroid cells.  (+info)