Effects of deletions at the C-terminus of tobacco acetohydroxyacid synthase on the enzyme activity and cofactor binding. (41/174)

AHAS (acetohydroxyacid synthase) catalyses the first committed step in the biosynthesis of branched-chain amino acids, such as valine, leucine and isoleucine. Owing to the unique presence of these biosynthetic pathways in plants and micro-organisms, AHAS has been widely investigated as an attractive target of several classes of herbicides. Recently, the crystal structure of the catalytic subunit of yeast AHAS has been resolved at 2.8 A (1 A=0.1 nm), showing that the active site is located at the dimer interface and is near the herbicide-binding site. In this structure, the existence of two disordered regions, a 'mobile loop' and a C-terminal 'lid', is worth notice. Although these regions contain the residues that are known to be important in substrate specificity and in herbicide resistance, they are poorly folded into any distinct secondary structure and are not within contact distance of the cofactors. In the present study, we have tried to demonstrate the role of these regions of tobacco AHAS by constructing variants with serial deletions, based on the structure of yeast AHAS. In contrast with the wild-type AHAS, the truncated mutant which removes the C-terminal lid, Delta630, and the internal deletion mutant without the mobile loop, Delta567-582, impaired the binding affinity for ThDP (thiamine diphosphate), and showed different elution profiles representing a monomeric form in gel-filtration chromatography. Our results suggest that these regions are involved in the binding/stabilization of the active dimer and ThDP binding.  (+info)

A cis-spreading nucleoprotein filament is responsible for the gene silencing activity found in the promoter relay mechanism. (42/174)

Transcription-generated DNA supercoiling plays a decisive role in a promoter relay mechanism for the coordinated expression of genes in the Salmonella typhimurium ilvIH-leuO-leuABCD gene cluster. A similar mechanism also operates to control expression of the genes in the Escherichia coli ilvIH-leuO-leuABCD gene cluster. However, the mechanism underlying the DNA supercoiling effect remained elusive. A bacterial gene silencer AT8 was found to be important for the repression state of the leuO gene as part of the promoter relay mechanism. In this communication, we demonstrated that the gene silencer AT8 is a nucleation site for recruiting histone-like nucleoid structuring protein to form a cis-spreading nucleoprotein filament that is responsible for silencing of the leuO gene. With a DNA geometric similarity rather than a DNA sequence specificity, the E. coli gene silencer EAT6 was capable of replacing the histone-like nucleoid structuring protein nucleation function of the S. typhimurium gene silencer AT8 for the leuO gene silencing. The interchangeability between DNA geometrical elements for supporting the silencing activity in the region is consistent with a previous finding that a neighboring transcription activity determines the outcome of the gene silencing activity. The geometric requirement, which was revealed for this silencing activity, explains the decisive role of transcription-generated DNA supercoiling found in the promoter relay mechanism.  (+info)

Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum. (43/174)

Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed Escherichia coli-C. glutamicum shuttle vector pECKA (5.4 kb, Km(r)). By using site-directed mutagenesis, one to three amino acid alterations (mutations M8, M11, and M13) were introduced into the small (regulatory) AHAS subunit encoded by ilvN. The activity of AHAS and its inhibition by valine, isoleucine, and leucine were measured in strains carrying the ilvBNC operon with mutations on the plasmid or the ilvNM13 mutation within the chromosome. The enzyme containing the M13 mutation was feedback resistant to all three amino acids. Different combinations of branched-chain amino acids did not inhibit wild-type AHAS to a greater extent than was measured in the presence of 5 mM valine alone (about 57%). We infer from these results that there is a single binding (allosteric) site for all three amino acids in the enzyme molecule. The strains carrying the ilvNM13 mutation in the chromosome produced more valine than their wild-type counterparts. The plasmid-free C. glutamicum DeltailvA DeltapanB ilvNM13 strain formed 90 mM valine within 48 h of cultivation in minimal medium. The same strain harboring the plasmid pECKAilvBNC produced as much as 130 mM valine under the same conditions.  (+info)

The carboligation reaction of acetohydroxyacid synthase II: steady-state intermediate distributions in wild type and mutants by NMR. (44/174)

The thiamin diphosphate (ThDP)-dependent enzyme acetohydroxyacid synthase (AHAS) catalyzes the first common step in branched-chain amino acid biosynthesis. By specific ligation of pyruvate with the alternative acceptor substrates 2-ketobutyrate and pyruvate, AHAS controls the flux through this branch point and determines the relative rates of synthesis of isoleucine, valine, and leucine, respectively. We used detailed NMR analysis to determine microscopic rate constants for elementary steps in the reactions of AHAS II and mutants altered at conserved residues Arg-276, Trp-464, and Met-250. In Arg276Lys, both the condensation of the enzyme-bound hydroxyethyl-ThDP carbanion/enamine (HEThDP) with the acceptor substrates and acetohydroxyacid release are slowed several orders of magnitude relative to the wild-type enzyme. We propose that the interaction of the guanidinium moiety of Arg-264 with the carboxylate of the acceptor ketoacid provides an optimal alignment of substrate and HEThDP orbitals in the reaction trajectory for acceptor ligation, whereas its interaction with the carboxylate of the covalent HEThDP-acceptor adduct plays a similar role in product release. Both Trp-464 and Met-250 affect the acceptor specificity. The high preference for ketobutyrate in the wild-type enzyme is lost in Trp464Leu as a consequence of similar forward rate constants of carboligation and product release for the alternative acceptors. In Met250Ala, the turnover rate is determined by the condensation of HEThDP with pyruvate and release of the acetolactate product, whereas the parallel steps with 2-ketobutyrate are considerably faster. We speculate that the specificity of carboligation and product liberation may be cumulative if the former is not completely committed.  (+info)

A mathematical model for the branched chain amino acid biosynthetic pathways of Escherichia coli K12. (45/174)

As a first step toward the elucidation of the systems biology of the model organism Escherichia coli, it was our goal to mathematically model a metabolic system of intermediate complexity, namely the well studied end product-regulated pathways for the biosynthesis of the branched chain amino acids L-isoleucine, L-valine, and L-leucine. This has been accomplished with the use of kMech (Yang, C.-R., Shapiro, B. E., Mjolsness, E. D., and Hatfield, G. W. (2005) Bioinformatics 21, in press), a Cellerator (Shapiro, B. E., Levchenko, A., Meyerowitz, E. M., Wold, B. J., and Mjolsness, E. D. (2003) Bioinformatics 19, 677-678) language extension that describes a suite of enzyme reaction mechanisms. Each enzyme mechanism is parsed by kMech into a set of fundamental association-dissociation reactions that are translated by Cellerator into ordinary differential equations. These ordinary differential equations are numerically solved by Mathematica. Any metabolic pathway can be simulated by stringing together appropriate kMech models and providing the physical and kinetic parameters for each enzyme in the pathway. Writing differential equations is not required. The mathematical model of branched chain amino acid biosynthesis in E. coli K12 presented here incorporates all of the forward and reverse enzyme reactions and regulatory circuits of the branched chain amino acid biosynthetic pathways, including single and multiple substrate (Ping Pong and Bi Bi) enzyme kinetic reactions, feedback inhibition (allosteric, competitive, and non-competitive) mechanisms, the channeling of metabolic flow through isozymes, the channeling of metabolic flow via transamination reactions, and active transport mechanisms. This model simulates the results of experimental measurements.  (+info)

Glutamate 636 of the Escherichia coli pyruvate dehydrogenase-E1 participates in active center communication and behaves as an engineered acetolactate synthase with unusual stereoselectivity. (46/174)

The residue Glu636 is located near the thiamine diphosphate (ThDP) binding site of the Escherichia coli pyruvate dehydrogenase complex E1 subunit (PDHc-E1), and to probe its function two variants, E636A and E636Q were created with specific activities of 2.5 and 26% compared with parental PDHc-E1. According to both fluorescence binding and kinetic assays, the E636A variant behaved according to half-of-the-sites mechanism with respect to ThDP. In contrast, with the E636Q variant a K(d,ThDP) = 4.34 microM and K(m,ThDP) = 11 microM were obtained with behavior more reminiscent of the parental enzyme. The CD spectra of both variants gave evidence for formation of the 1',4'-iminopyrimidine tautomer on binding of phosphonolactylthiamine diphosphate, a stable analog of the substrate-ThDP covalent complex. Rapid formation of optically active (R)-acetolactate by both variants, but not by the parental enzyme, was observed by CD and NMR spectroscopy. The acetolactate configuration produced by the Glu636 variants is opposite that produced by the enzyme acetolactate synthase and the Asp28-substituted variants of yeast pyruvate decarboxylase, suggesting that the active centers of the two sets of enzymes exhibit different facial selectivity (re or si) vis a vis pyruvate. The tryptic peptide map (mass spectral analysis) revealed that the Glu636 substitution changed the mobility of a loop comprising amino acid residues from the ThDP binding fold. Apparently, the residue Glu636 has important functions both in active center communication and in protecting the active center from undesirable "carboligase" side reactions.  (+info)

Two consecutive aspartic acid residues conferring herbicide resistance in tobacco acetohydroxy acid synthase. (47/174)

Acetohydroxy acid synthase (AHAS) catalyzes the first common step in the biosynthesis pathway of the branch chain amino acids in plants and microorganisms. A great deal of interest has been focused on AHAS since it was identified as the target of several classes of potent herbicides. In an effort to produce a mutant usable in the development of an herbicide-resistant transgenic plant, two consecutive aspartic acid residues, which are very likely positioned next to the enzyme-bound herbicide sulfonylurea as the homologous residues in AHAS from yeast, were selected for this study. Four single-point mutants and two double mutants were constructed, and designated D374A, D374E, D375A, D375E, D374A/D375A, and D374E/D375E. All mutants were active, but the D374A mutant exhibited substrate inhibition at high concentrations. The D374E mutant also evidenced a profound reduction with regard to catalytic efficiency. The mutation of D375A increased the K(m) value for pyruvate nearly 10-fold. In contrast, the D375E mutant reduced this value by more than 3-fold. The double mutants exhibited synergistic reduction in catalytic efficiencies. All mutants constructed in this study proved to be strongly resistant to the herbicide sulfonylurea Londax. The double mutants and the mutants with the D375 residue were also strongly cross-resistant to the herbicide triazolopyrimidine TP. However, only the D374A mutant proved to be strongly resistant to imidazolinone Cadre. The data presented here indicate that the two residues, D374 and D375, are located at a common binding site for the herbicides sulfonylurea and triazolopyrimidine. D375E may be a valuable mutant for the development of herbicide-resistant transgenic plants.  (+info)

Characterization of acetohydroxyacid synthase from Mycobacterium tuberculosis and the identification of its new inhibitor from the screening of a chemical library. (48/174)

Acetohydroxyacid synthase (AHAS) is a thiamin diphosphate- (ThDP-) and FAD-dependent enzyme that catalyzes the first common step in the biosynthetic pathway of the branched-amino acids such as leucine, isoleucine, and valine. The genes of AHAS from Mycobacterium tuberculosis were cloned, and overexpressed in E. coli and purified to homogeneity. The purified AHAS from M. tuberculosis is effectively inhibited by pyrazosulfuron ethyl (PSE), an inhibitor of plant AHAS enzyme, with the IC(50) (inhibitory concentration 50%) of 0.87 microM. The kinetic parameters of M. tuberculosis AHAS were determined, and an enzyme activity assay system using 96-well microplate was designed. After screening of a chemical library composed of 5600 compounds using the assay system, a new class of AHAS inhibitor was identified with the IC(50) in the range of 1.8-2.6 microM. One of the identified compounds (KHG20612) further showed growth inhibition activity against various strains of M. tuberculosis. The correlation of the inhibitory activity of the identified compound against AHAS to the cell growth inhibition activity suggested that AHAS might be served as a target protein for the development of novel anti-tuberculosis therapeutics.  (+info)