Synthesis, molecular properties prediction, and anti-staphylococcal activity of N-acylhydrazones and new 1,3,4-oxadiazole derivatives. (33/78)

 (+info)

An improved procedure for derivatization of controlled-pore glass beads for solid-phase oligonucleotide synthesis. (34/78)

A simplified and economical method for the attachment of 2'-deoxyribo, ribo and arabinonucleosides onto long-chain alkylamidopropanoic acid controlled-pore glass (LCAAP-CPG, P-3) is described. In this procedure, 5'-O-tritylated nucleosides are coupled directly to LCAAP-CPG in excellent yields using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (DEC) as coupling reagent. The conventional and time-consuming preparation of nucleoside-3'-O-succinates is no longer required.  (+info)

Influence of surface charge on the incorporation and orientation of cytochrome c oxidase in liposomes. (35/78)

Cytochrome c-oxidase is usually oriented 80-90% right-side-out when reconstituted with asolectin by the cholate dialysis method. Transformation of positively charged lysine groups at the matrix domain into negatively charged groups with succinic anhydride results in random orientation. A random orientation is also found after reconstitution in phosphatidylcholine, which can be changed into predominant right-side-out orientation by addition of cardiolipin. It is concluded that electrostatic interaction between positively charged groups of cytochrome c-oxidase with negative groups of phospholipids determines the asymmetric orientation of the enzyme in liposomes.  (+info)

The isopropoxyacetic group for convenient base protection during solid-support synthesis of oligodeoxyribonucleotides and their triester analogs. (36/78)

Isopropoxyacetic anhydride was successfully used for protection of exoaminofunctions of 2'-deoxyadenosine, -guanosine and -cytidine. N-isopropoxyacetylated nucleosides are stable under the conditions of the synthesis of oligodeoxyribonucleotides on the solid support. Removal of N-isopropoxyacetyl is much faster than that of commonly used benzoyl or isobutyryl groups viz. it is completed within the operation of cleavage of the oligodeoxyribonucleotide from the solid support. This observation enabled synthesis of -OCH2CH3 and -OCH2CF3 triesters, which hydrolyse partially or completely when standard deprotection conditions are applied.  (+info)

Inhibitors of sterol synthesis. Chromatography of acetate derivatives of oxygenated sterols. (37/78)

The separation of the acetate derivatives of a number of oxygenated sterols was achieved by medium pressure liquid chromatography on silica gel columns and by normal and reversed phase high performance liquid chromatography. We have explored the application of these chromatographic systems for the analysis of oxygenated sterols of plasma samples from two normal human subjects. The addition of highly purified [14C]cholesterol to plasma permitted the detection and quantitation of oxygenated sterols formed by autoxidation of cholesterol during processing of the samples. Special attempts to suppress autoxidation of cholesterol included the use of an all-glass closed system for saponification and extraction under argon followed by rapid removal of cholesterol from the polar sterols by reversed phase medium pressure liquid chromatography. Chromatographic analyses of the [3H]acetate derivatives of the polar sterols provided a sensitive approach for the detection and quantitation of the individual oxygenated sterols. Oxygenated sterols detected in plasma included cholest-5-ene-3 beta,26-diol, (24S)-cholest-5-ene-3 beta,24-diol, and cholest-5-ene-3 beta,7 alpha-diol. After correction for their formation by autoxidation of cholesterol during processing of the samples, very little or none of the following sterols were observed: cholest-5-ene-3 beta,7 beta-diol, 5 alpha,6 alpha-epoxy-cholestan-3 beta-ol, 5 beta,6 beta-epoxy-cholestan-3 beta-ol, and cholestane- 3 beta, 5 alpha,6 beta-triol, and the 25-hydroxy, 22R-hydroxy, 21-hydroxy, 20 alpha-hydroxy, and 19-hydroxy derivatives of cholesterol.  (+info)

Differential reactivities of lysines in calmodulin complexed to phosphatase. (38/78)

Calmodulin and calmodulin complexed with calcineurin phosphatase were trace labeled with [3H]acetic anhydride and the incorporation of [3H]acetate into each epsilon-amino lysine of calmodulin was measured. The relative reactivities of calmodulin lysines were higher in the presence of Ca2+ than in the presence of EGTA, and the order was: Lys-75 greater than Lys-94 greater than Lys-148 greater than or equal to Lys-77 greater than Lys-13 greater than or equal to Lys-21 greater than Lys-30. The changes in relative reactivity implied a change in conformation. When calmodulin was complexed with the phosphatase, Lys-21, Lys-77, and Lys-148 were most protected, implying that these residues are at or near the interaction sites or are conformationally perturbed by the interaction. Lys-30 and Lys-75 were slightly protected, lysine 13 showed no change, while lysine 94 significantly increased in reactivity. Comparison with results obtained from myosin light chain kinase using a similar technique (Jackson, A. E., Carraway, K. L., III, Puett, D., and Brew, K. (1986) J. Biol. Chem. 261, 12226-12232) reveals that calmodulin may interact with each of the two enzymes similarly at or near Lys-21, Lys-75, and Lys-148; one difference with phosphatase is that complex formation also involved Lys-77. These findings suggest that calmodulin interacts differently with its target enzymes.  (+info)

Effects of interaction with calcineurin on the reactivities of calmodulin lysines. (39/78)

Calmodulin was trace labeled by acetylation with [3H]acetic anhydride in the presence and absence of a 30% molar excess of the phosphatase calcineurin; phenylalanine was included in the reaction mixtures as an internal standard. The level of 3H acetylation of each of the 7 lysines was determined and corrected for differences arising from reaction conditions using the labeling of the internal standard, following procedures that are closely similar to those used in a previous study of the interaction of calmodulin with myosin light chain kinase (Jackson, A. E., Carraway, K. L., III, Puett, D., and Brew, K. (1986) J. Biol. Chem. 261, 12226-12232). The interaction with calcineurin was found to produce a 10-fold reduction in the acetylation of lysine 75, with lesser but significant effects on lysines 21 and 148. A small but reproducible perturbation of lysine 77 was also observed. The results are similar to those that are produced by the interaction with myosin light chain kinase. However, when they are compared with two recent reports between which there are major discrepancies (Manalan, A. S., and Klee, C. B. (1987) Biochemistry 26, 1382-1390; Winkler, M. A., Fried, V. A., Merat, D. L., and Cheung, W. Y. (1987) J. Biol. Chem. 262, 15466-15471), our results are in good agreement with those obtained in the former study. From the location of the perturbed groups in the three-dimensional structure of calmodulin, it appears that the interaction site on calmodulin for calcineurin, as well as for myosin light chain kinase, is very extended and may include hydrophobic pockets at homologous sites near the carboxyl-terminal ends of the two halves of the molecule.  (+info)

Chemical modification of the bifunctional human serum pseudocholinesterase. Effect on the pseudocholinesterase and aryl acylamidase activities. (40/78)

The effect of chemical modification on the pseudocholinesterase and aryl acylamidase activities of purified human serum pseudocholinesterase was examined in the absence and presence of butyrylcholine iodide, the substrate of pseudocholinesterase. Modification by 2-hydroxy-5-nitrobenzyl bromide, N-bromosuccinimide, diethylpyrocarbonate and trinitrobenzenesulfonic acid caused a parallel inactivation of both pseudocholinesterase and aryl acylamidase activities that could be prevented by butyrylcholine iodide. With phenylglyoxal and 2,4-pentanedione as modifiers there was a selective activation of pseudocholinesterase alone with no effect on aryl acylamidase. This activation could be prevented by butyrylcholine iodide. N-Ethylmaleimide and p-hydroxy-mercuribenzoate when used for modification did not have any effect on the enzyme activities. The results suggested essential tryptophan, lysine and histidine residues at a common catalytic site for pseudocholinesterase and aryl acylamidase and an arginine residue (or residues) exclusively for pseudocholinesterase. The use of N-acetylimidazole, tetranitromethane and acetic anhydride as modifiers indicated a biphasic change in both pseudocholinesterase and aryl acylamidase activities. At low concentrations of the modifiers a stimulation in activities and at high concentrations an inactivation was observed. Butyrylcholine iodide or propionylcholine chloride selectively protected the inactivation phase without affecting the activation phase. Protection by the substrates at the inactivation phase resulted in not only a reversal of the enzyme inactivation but also an activation. Spectral studies and hydroxylamine treatment showed that tyrosine residues were modified during the activation phase. The results suggested that the modified tyrosine residues responsible for the activation were not involved in the active site of pseudocholinesterase or aryl acylamidase and that they were more amenable for modification in comparison to the residues responsible for inactivation. Two reversible inhibitors of pseudocholinesterase, namely ethopropazine and imipramine, were used as protectors during modification. Unlike the substrate butyrylcholine iodide, these inhibitors could not protect against the inactivation resulting from modification by 2-hydroxy-5-nitrobenzyl bromide, N-bromosuccinimide and trinitrobenzenesulfonic acid. But they could protect against the activation of pseudocholinesterase and aryl acylamidase by low concentrations of N-acetylimidazole and acetic anhydride thereby suggesting that the binding site of these inhibitors involves the non-active-site tyrosine residues.  (+info)