Mechanics of Coriolis stimulus and inducing factors of motion sickness. (65/829)

To specify inducing factors of motion sickness comprised in Coriolis stimulus, or cross-coupled rotation, the sensation of rotation derived from the semicircular canal system during and after Coriolis stimulus under a variety of stimulus conditions, was estimated by an approach from mechanics with giving minimal hypotheses and simplifications on the semicircular canal system and the sensory nervous system. By solving an equation of motion of the endolymph during Coriolis stimulus, rotating angle of the endolymph was obtained, and the sensation of rotation derived from each semicircular canal was estimated. Then the sensation derived from the whole semicircular canal system was particularly considered in two cases of a single Coriolis stimulus and cyclic Coriolis stimuli. The magnitude and the direction of sensation of rotation were shown to depend on an angular velocity of body rotation and a rotating angle of head movement (amplitude of head oscillation when cyclic Coriolis stimuli) irrespective of initial angle (center angle) of the head relative to the vertical axis. The present mechanical analysis of Coriolis stimulus led a suggestion that the severity of nausea evoked by Coriolis stimulus is proportional to the effective value of the sensation of rotation caused by the Coriolis stimulus.  (+info)

Fluid-dynamic characteristics of a bristled wing. (66/829)

Thrips fly at a chord-based Reynolds number of approximately 10 using bristled rather than solid wings. We tested two dynamically scaled mechanical models of a thrips forewing. In the bristled design, cylindrical rods model the bristles of the forewing; the solid design was identical to the bristled one in shape, but the spaces between the 'bristles' were filled in by membrane. We studied four different motion patterns: (i) forward motion at a constant forward velocity, (ii) forward motion at a translational acceleration, (iii) rotational motion at a constant angular velocity and (iv) rotational motion at an angular acceleration. Fluid-dynamic forces acting on the bristled model wing were a little smaller than those on the solid wing. Therefore, the bristled wing of a thrips cannot be explained in terms of increased fluid-dynamic forces.  (+info)

Comparison of accelerometry and oxymetry for measuring daily physical activity. (67/829)

To assess the validity of accelerometry in measuring daily physical activity, the energy consumption calculated by accelerometry, with respiratory gas analysis as a reference, was evaluated in 45 non-athletes during various exercise tests. Subjects were required to (1) walk on a treadmill ergometer at various speeds, (2) walk on a treadmill ergometer at a fixed speed and with a stride of 20% more or 20% less than that when walking freely, (3) walk on a treadmill ergometer at a fixed speed wearing either sneakers or leather-soled shoes, and (4) cycle on a bicycle ergometer. There were strong linear relationships between the measurements during the progressively graded treadmill test, with an overall Pearson correlation coefficient of 0.97. The mean estimated difference ranged from -0.77 to 0.27 kcal/min and the coefficients of variation from 13.2% to 22.2%. However, the difference between the methods was not negligible for individual subjects. Accelerometry overestimated energy expenditure during short-step walking, and underestimated it during long-step walking. No significant difference in energy expenditure was found according to the type of shoes worn. Cycling activity was not recorded by accelerometry. Accelerometry is a reasonably accurate and feasible method for evaluating the physical activities of non-athletes, and could be a common tool for epidemiological research and health promotion despite its limitations.  (+info)

Movement smoothness changes during stroke recovery. (68/829)

Smoothness is characteristic of coordinated human movements, and stroke patients' movements seem to grow more smooth with recovery. We used a robotic therapy device to analyze five different measures of movement smoothness in the hemiparetic arm of 31 patients recovering from stroke. Four of the five metrics showed general increases in smoothness for the entire patient population. However, according to the fifth metric, the movements of patients with recent stroke grew less smooth over the course of therapy. This pattern was reproduced in a computer simulation of recovery based on submovement blending, suggesting that progressive blending of submovements underlies stroke recovery.  (+info)

Nonuniform activation of the agonist muscle does not covary with index finger acceleration in old adults. (69/829)

This study examined the patterns of activation in the superficial and deep parts of the first dorsal interosseus muscle and in the antagonist muscle, second palmar interosseus, during postural tasks (position holding) and slow movements (position tracking) of the index finger performed by young and old adults. The position-tracking task involved the index finger lifting light loads (2.5, 10, and 35% of maximum) with shortening and lengthening contractions as steadily as possible. Steadiness was quantified in both tasks as the standard deviation of index finger acceleration. The fluctuations in acceleration during the two tasks were greater for the old subjects (62-72 yr) compared with young subjects (19-27 yr), especially with the lightest loads. The two groups of subjects activated the superficial and deep parts of first dorsal interosseus at similar intensities during the position-holding task, whereas the deep part was more active during the shortening and lengthening contractions of the position-tracking task. The nonuniform activation of first dorsal interosseus, therefore, was not associated with the difference in the standard deviation of acceleration between the young and old subjects. Furthermore, there was no association between the average level of coactivation by the antagonist muscle and the standard deviation of acceleration for either group of subjects across these tasks. Thus the greater variability in motor output exhibited by the older adults could not be explained by either the nonuniform activation of the agonist muscle or the average level of coactivation by the antagonist muscle.  (+info)

Asymmetric integration recorded from vestibular-only cells in response to position transients. (70/829)

Angular and translational accelerations excite the semicircular canals and otolith organs, respectively. While canal afferents approximately encode head angular velocity due to the biomechanical integration performed by the canals, otolith signals have been found to approximate head translational acceleration. Because central vestibular pathways require velocity and position signals for their operation, the question has been raised as to how the integration of the otolith signals is accomplished. We recorded responses from 62 vestibular-only neurons in the vestibular nucleus of two monkeys to position transients in the naso-occipital and interaural orientations and varying directions in between. Responses to the transients were directionally asymmetric; one direction elicited a response that approximated the integral of the acceleration of the stimulus. In the opposite direction, the cells simply encoded the acceleration of the motion. We present a model that suggests that a neural integrator is not needed. Instead a neuron with a long membrane time constant and an excitatory postsynaptic potential duration that increases with the firing rate of the presynaptic cell can emulate the observed behavior.  (+info)

Left ventricular outflow tract mean systolic acceleration as a surrogate for the slope of the left ventricular end-systolic pressure-volume relationship. (71/829)

OBJECTIVE: The goal of this study was to analyze left ventricular outflow tract systolic acceleration (LVOT(Acc)) during alterations in left ventricular (LV) contractility and LV filling. BACKGROUND: Most indexes described to quantify LV systolic function, such as LV ejection fraction and cardiac output, are dependent on loading conditions. METHODS: In 18 sheep (4 normal, 6 with aortic regurgitation, and 8 with old myocardial infarction), blood flow velocities through the LVOT were recorded using conventional pulsed Doppler. The LVOT(Acc) was calculated as the aortic peak velocity divided by the time to peak flow; LVOT(Acc) was compared with LV maximal elastance (E(m)) acquired by conductance catheter under different loading conditions, including volume and pressure overload during an acute coronary occlusion (n = 10). In addition, a clinically validated lumped-parameter numerical model of the cardiovascular system was used to support our findings. RESULTS: Left ventricular E(m) and LVOT(Acc) decreased during ischemia (1.67 +/- 0.67 mm Hg.ml(-1) before vs. 0.93 +/- 0.41 mm Hg.ml(-1) during acute coronary occlusion [p < 0.05] and 7.9 +/- 3.1 m.s(-2) before vs. 4.4 +/- 1.0 m.s(-2) during coronary occlusion [p < 0.05], respectively). Left ventricular outflow tract systolic acceleration showed a strong linear correlation with LV E(m) (y = 3.84x + 1.87, r = 0.85, p < 0.001). Similar findings were obtained with the numerical modeling, which demonstrated a strong correlation between predicted and actual LV E(m) (predicted = 0.98 [actual] -0.01, r = 0.86). By analysis of variance, there was no statistically significant difference in LVOT(Acc) under different loading conditions. CONCLUSIONS: For a variety of hemodynamic conditions, LVOT(Acc) was linearly related to the LV contractility index LV E(m) and was independent of loading conditions. These findings were consistent with numerical modeling. Thus, this Doppler index may serve as a good noninvasive index of LV contractility.  (+info)

Motor scaling by viewing distance of early visual motion signals during smooth pursuit. (72/829)

The geometry of gaze stabilization during head translation requires eye movements to scale proportionally to the inverse of target distance. Such a scaling has indeed been demonstrated to exist for the translational vestibuloocular reflex (TVOR), as well as optic flow-selective translational visuomotor reflexes (e.g., ocular following, OFR). The similarities in this scaling by a neural estimate of target distance for both the TVOR and the OFR have been interpreted to suggest that the two reflexes share common premotor processing. Because the neural substrates of OFR are partly shared by those for the generation of pursuit eye movements, we wanted to know if the site of gain modulation for TVOR and OFR is also part of a major pathway for pursuit. Thus, in the present studies, we investigated in rhesus monkeys whether initial eye velocity and acceleration during the open-loop portion of step ramp pursuit scales with target distance. Specifically, with visual motion identical on the retina during tracking at different distances (12, 24, and 60 cm), we compared the first 80 ms of horizontal pursuit. We report that initial eye velocity and acceleration exhibits either no or a very small dependence on vergence angle that is at least an order of magnitude less than the corresponding dependence of the TVOR and OFR. The results suggest that the neural substrates for motor scaling by target distance remain largely distinct from the main pathway for pursuit.  (+info)