T-cell receptor and immunoglobulin genes are rearranged together in Abelson virus-transformed pre-B and pre-T cells. (65/205)

We have assessed the state of rearrangement and expression of B- and T-cell antigen receptor genes in cells of Abelson murine leukemia virus-transformed thymomas and other tumors. We found that unrearranged TcR gamma genes are expressed, as are unrearranged C mu genes, in pre-T, pre-B, and myeloid cells. We also found TcR gamma genes rearranged and expressed in putative pre-T cells and in cells apparently committed to the B-cell lineage. This is in contrast to the data from more mature T- and B-cell tumors. We conclude that in immature lymphoid cells both immunoglobulin and TcR gamma genes are accessible for rearrangement. We discuss the implications of these observations for an understanding of the B-T lymphoid differentiation event.  (+info)

Identification of a novel bone marrow-derived B-cell progenitor population that coexpresses B220 and Thy-1 and is highly enriched for Abelson leukemia virus targets. (66/205)

A novel stage in early B-lymphocyte differentiation has been identified in normal mouse bone marrow cells. Earlier work had demonstrated that bone marrow cells characterized by low levels of Thy-1 and lack of a panel of lineage markers (Thy-1lo Lin- cells) were highly enriched for pluripotent hematopoietic stem cells. In this paper, we present evidence that another bone marrow population, which expressed low levels of Thy-1 and coexpressed B220, a B-lineage-specific form of the leukocyte common antigen, contained early and potent precursors for B lymphocytes upon in vivo transfer to irradiated hosts. These Thy-1lo B220+ cells, comprising 1 to 2% of bone marrow cells, were enriched for large cells in the mitotic cycle; the population lacked significant pluripotent hematopoietic stem cell activity and myeloid-erythroid progenitors. Most strikingly, Thy-1lo B220+ cells represented a highly enriched population of bone marrow cells that could be targets of Abelson murine leukemia virus transformation. We propose that Thy-1lo B220+ bone marrow cells represent the earliest stage of committed lymphocyte progenitors, intermediate in differentiation between Thy-1lo Lin- pluripotent stem cells and, in the B lineage, Thy-1- B220+ pre-B cells.  (+info)

Deletion of an N-terminal regulatory domain of the c-abl tyrosine kinase activates its oncogenic potential. (67/205)

The requirements for the oncogenic conversion of the c-abl proto-oncogene have been determined by the expression of N-terminal deleted forms and viral gag-fused forms of the c-abl proteins from a selectable retroviral vector. To activate the transforming potential of c-abl, it is necessary that (i) specific N-terminal amino acids are deleted to release the kinase from negative regulation in vivo; (ii) an N-terminal myristylation site is part of the activated kinase; (iii) the fatty-acylated, activated kinase is overproduced. The N-terminal amino acids found to be necessary for the cellular inhibition of c-abl tyrosine phosphorylation are part of a homologous region present in many non-receptor tyrosine kinases, the v-crk oncogene and phospholipase C-II. Overproduction of a deregulated and myristylated c-abl tyrosine kinase induces the transformation of NIH 3T3 cells.  (+info)

Abelson murine leukemia virus induces platelet-derived growth factor-independent fibroblast growth: correlation with kinase activity and dissociation from full morphologic transformation. (68/205)

Abelson murine leukemia virus (A-MuLV) encodes a single protein product, a tyrosine-specific protein kinase, whose activity is necessary for cell transformation by this retrovirus. Using a defined medium culture system, we demonstrate that transformation of NIH 3T3 fibroblasts by A-MuLV abrogates their normal requirement for platelet-derived growth factor (PDGF) for cell growth. Analysis of constructed insertional mutant viruses revealed an absolute correlation between A-MuLV-encoded tyrosine kinase activity and PDGF-independent fibroblast growth. Sequences of the provirus not required for kinase activity appeared unnecessary for abrogating the fibroblast requirement for PDGF. Conversely, sequences required for kinase activity appeared necessary, suggesting that induction of PDGF-independent fibroblast growth, like cell transformation, is a function of this tyrosine kinase. Fibroblasts transformed by a partially transformation-defective mutant demonstrated incomplete morphological transformation but were still independent of PDGF for growth. Thus, the processes of full morphological transformation and growth factor independence can be partially dissociated.  (+info)

A truncated v-abl-derived tyrosine-specific tyrosine kinase expressed in Escherichia coli. (69/205)

Several biochemical properties of a 43 kDa v-abl-encoded tyrosine-specific protein kinase (p43v-abl) expressed in Escherichia coli were examined. p43v-abl is a fragment of a 60 kDa v-abl-encoded precursor, p60v-abl, and could be generated by limited proteolysis of a purified p60v-abl with trypsin. Tryptic cleavage of p60v-abl was prevented in the presence of ATP. These results suggest that the catalytic kinase domain of v-abl-derived protein can be separated from other (regulatory) domains by limited proteolysis. p43v-abl readily phosphorylated tyrosine residues on several different protein and peptide substrates, including peptides containing only two amino acid residues. However, the local sequence of the tyrosine-containing peptide substrate significantly affected its rate of phosphorylation. Thus the primary structure and local conformation at the tyrosine acceptor site can play an important role in determining the substrate specificity of v-abl-derived kinase. Phosphorylation by p43v-abl requires Mn2+, Co2+ or Mg2+ and exhibits a strong preference for ATP as phosphate donor. Analogues of ATP and the thiol-reactive reagent N-ethylmaleimide inhibited p43v-abl kinase activity. Purified p43v-abl is intrinsically thermolabile (t1/2 = 5 min at 40 degrees C) and phosphorylates glycerol inefficiently (Km = 1.4 M).  (+info)

Multiple steps are required for the induction of tumors by Abelson murine leukemia virus. (70/205)

Helper virus-free Abelson murine leukemia virus (A-MuLV) was used to induce monoclonal pre-B-cell tumors in mice. The clonality, patterns of immunoglobulin heavy-chain gene rearrangement, tumorigenicity, and v-abl oncogene expression in individual preleukemic and leukemic colonies were compared. Our results indicate that A-MuLV preleukemic cells with low or undetectable tumorigenic potential give rise to leukemic cells with high tumorigenic potential by a process of subclone selection. The levels of v-abl oncogene product in preleukemic and leukemic cell populations were not significantly different. These results suggest that an additional event(s) unrelated to the level of the v-abl protein product is required for A-MuLV-transformed cells to become fully malignant.  (+info)

Distinct helper virus requirements for Abelson murine leukemia virus-induced pre-B- and T-cell lymphomas. (71/205)

Abelson murine leukemia virus (A-MuLV) can induce pre-B- or T-cell lymphomas (thymomas) in mice depending on the route and time of injection. Previous studies have shown that the choice of the helper virus used to rescue A-MuLV greatly influences its ability to induce pre-B-cell lymphomas. In this study, we investigated the role of the helper virus in A-MuLV-induced thymomas. A-MuLV rescued with the helper Moloney MuLV, BALB/c endogenous N-tropic MuLV, and two chimeric MuLVs derived from these two parents were injected intrathymically in young adult NIH Swiss mice. All four A-MuLV pseudotypes were found to be equally efficient in the induction of thymomas, whereas drastic differences were observed in their pre-B-cell lymphomagenic potential. Thymoma induction by A-MuLV was independent of the replication potential of the helper virus in the thymus, and no helper proviral sequences could be detected in the majority of thymomas induced by A-MuLV rescued with parental BALB/c endogenous or chimeric MuLVs. In the thymomas in which helper proviruses were present, none of them were found integrated in the Ahi-1 region, a common proviral integration site found in A-MuLV-induced pre-B-cell lymphomas (Y. Poirer, C. Kozak, and P. Jolicoeur, J. Virol. 62:3985-3992, 1988). In addition, helper-free stocks of A-MuLV were found to be as lymphomagneic as other pseudotypes in inducing thymomas after intrathymic inoculation, in contrast to their inability to induce pre-B-cell lymphomas when injected intraperitoneally in newborn mice. Restriction enzyme analysis revealed one to three A-MuLV proviruses in each thymoma, indicating the oligoclonality of these tumors. Analysis of the immunoglobulin and T-cell receptor loci confirmed that the major population of cells of these primary thymomas belongs to the T-cell lineage. Together, these results indicate that the helper virus has no effect in the induction of A-MuLV-induced T-cell lymphomas, in contrast to its important role in the induction of A-MuLV-induced pre-B-cell lymphomas. Our data also revealed distinct biological requirements for transformation of these two target cells by v-abl.  (+info)

N-terminal mutations activate the leukemogenic potential of the myristoylated form of c-abl. (72/205)

The two major forms of the c-abl gene differ from their activated counterpart, the v-abl oncogene of the Abelson murine leukemia virus by the replacement of their N-terminal sequences with viral gag sequences. Overexpression of p150c-abl type IV in a retroviral vector similar to Abelson virus does not transform NIH 3T3 fibroblasts, even though it is expressed and myristoylated at levels comparable to pp160v-abl. Members of a nested set of deletion mutations of the N-terminus of c-abl type IV in this expression system will activate abl to transform murine fibroblasts. The smallest of these deletions, delta XB, efficiently transforms lymphoid cells in vitro and causes leukemia in vivo demonstrating that gag sequences are not necessary for abl-induced leukemogenesis. The delta XB mutation defines an N-terminal regulatory domain, which shares a surprising homology with chicken oncogene v-crk and phospholipase C-II. Although overexpression of the myristoylated form of c-abl does not transform cells, it nonetheless has a profound effect on cell growth.  (+info)