CDK1-mediated phosphorylation of the RIIalpha regulatory subunit of PKA works as a molecular switch that promotes dissociation of RIIalpha from centrosomes at mitosis. (57/496)

Protein kinase A regulatory subunit RIIalpha is tightly bound to centrosomal structures during interphase through interaction with the A-kinase anchoring protein AKAP450, but dissociates and redistributes from centrosomes at mitosis. The cyclin B-p34(cdc2) kinase (CDK1) has been shown to phosphorylate RIIalpha on T54 and this has been proposed to alter the subcellular localization of RIIalpha. We have made stable transfectants from an RIIalpha-deficient leukemia cell line (Reh) that expresses either wild-type or mutant RIIalpha (RIIalpha(T54E)). When expressed, RIIalpha detaches from centrosomes at mitosis and dissociates from its centrosomal location in purified nucleus-centrosome complexes by incubation with CDK1 in vitro. By contrast, centrosomal RIIalpha(T54E) is not redistributed at mitosis, remains mostly associated with centrosomes during all phases of the cell cycle and cannot be solubilized by CDK1 in vitro. Furthermore, RIIalpha is solubilized from particular cell fractions and changes affinity for AKAP450 in the presence of CDK1. D and V mutations of T54 also reduce affinity for the N-terminal RII-binding domain of AKAP450, whereas small neutral residues do not change affinity detected by surface plasmon resonance. In addition, only RIIalpha(T54E) interacts with AKAP450 in a RIPA-soluble extract from mitotic cells. Finally, microtubule repolymerization from mitotic centrosomes of the RIIalpha(T54E) transfectant is poorer and occurs at a lower frequency than that of RIIalpha transfectants. Our results suggest that T54 phosphorylation of RIIalpha by CDK1 might serve to regulate the centrosomal association of PKA during the cell cycle.  (+info)

Interaction of heterotrimeric G13 protein with an A-kinase-anchoring protein 110 (AKAP110) mediates cAMP-independent PKA activation. (58/496)

Heterotrimeric G proteins and protein kinase A (PKA) are two important transmitters that transfer signals from a wide variety of cell surface receptors to generate physiological responses. The established mechanism of PKA activation involves the activation of the Gs-cAMP pathway. Binding of cAMP to the regulatory subunit of PKA (rPKA) leads to a release and subsequent activation of a catalytic subunit of PKA (cPKA). Here, we report a novel mechanism of PKA stimulation that does not require cAMP. Using yeast two-hybrid screening, we found that the alpha subunit of G13 protein interacted with a member of the PKA-anchoring protein family, AKAP110. Using in vitro binding and coimmunoprecipitation assays, we have shown that only activated G alpha 13 binds to AKAP110, suggesting a potential role for AKAP110 as a G alpha subunit effector protein. Importantly, G alpha 13, AKAP110, rPKA, and cPKA can form a complex, as shown by coimmunoprecipitation. By characterizing the functional significance of the G alpha 13-AKAP110 interaction, we have found that G alpha 13 induced release of the cPKA from the AKAP110-rPKA complex, resulting in a cAMP-independent PKA activation. Finally, AKAP110 significantly potentiated G alpha 13-induced activation of PKA. Thus, AKAP110 provides a link between heterotrimeric G proteins and cAMP-independent activation of PKA.  (+info)

Ht31: the first protein kinase A anchoring protein to integrate protein kinase A and Rho signaling. (59/496)

In an attempt to isolate protein kinase A anchoring proteins (AKAPs) involved in vasopressin-mediated water reabsorbtion, the complete sequence of the human AKAP Ht31 was determined and a partial cDNA of its rat orthologue (Rt31) was cloned. The Ht31 cDNA includes the estrogen receptor cofactor Brx and the RhoA GDP/GTP exchange factor proto-lymphoid blast crisis (Lbc) sequences. The Ht31 gene was assigned to chromosome 15 (region q24-q25). It encodes Ht31 and the smaller splice variants Brx and proto-Lbc. A protein of the predicted size of Ht31 (309 kDa) was detected in human mammary carcinoma and HeLa cells. Anti-Ht31/Rt31 antibodies immunoprecipitated RhoA from primary cultured rat renal inner medullary collecting duct cells, indicating an interaction between the AKAP and RhoA in vivo. These results suggest that Ht31/Rt31 represent a new type of AKAP, containing both an anchoring and a catalytic domain, which appears to be capable of modulating the activity of an interacting partner. Ht31/Rt31 have the potential to integrate Rho and protein kinase A signaling pathways, and thus, are prime candidates to regulate vasopressin-mediated water reabsorbtion.  (+info)

PKA, PKC, and AKAP localization in and around the neuromuscular junction. (60/496)

BACKGROUND: One mechanism that directs the action of the second messengers, cAMP and diacylglycerol, is the compartmentalization of protein kinase A (PKA) and protein kinase C (PKC). A-kinase anchoring proteins (AKAPs) can recruit both enzymes to specific subcellular locations via interactions with the various isoforms of each family of kinases. We found previously that a new class of AKAPs, dual-specific AKAPs, denoted D-AKAP1 and D-AKAP2, bind to RIalpha in addition to the RII subunits. RESULTS: Immunohistochemistry and confocal microscopy were used here to determine that D-AKAP1 colocalizes with RIalpha at the postsynaptic membrane of the vertebrate neuromuscular junction (NMJ) and the adjacent muscle, but not in the presynaptic region. The labeling pattern for RIalpha and D-AKAP1 overlapped with mitochondrial staining in the muscle fibers, consistent with our previous work showing D-AKAP1 association with mitochondria in cultured cells. The immunoreactivity of D-AKAP2 was distinct from that of D-AKAP1. We also report here that even though the PKA type II subunits (RIIalpha and RIIbeta) are localized at the NMJ, their patterns are distinctive and differ from the other R and D-AKAP patterns examined. PKCbeta appeared to colocalize with the AKAP, gravin, at the postsynaptic membrane. CONCLUSIONS: The kinases and AKAPs investigated have distinct patterns of colocalization, which suggest a complex arrangement of signaling micro-environments. Because the labeling patterns for RIalpha and D-AKAP 1 are similar in the muscle fibers and at the postsynaptic membrane, it may be that this AKAP anchors RIalpha in these regions. Likewise, gravin may be an anchor of PKCbeta at the NMJ.  (+info)

A novel leucine zipper targets AKAP15 and cyclic AMP-dependent protein kinase to the C terminus of the skeletal muscle Ca2+ channel and modulates its function. (61/496)

In skeletal muscle, voltage-dependent potentiation of L-type Ca(2+) channel (Ca(V)1.1) activity requires phosphorylation by cyclic AMP-dependent protein kinase (PKA) anchored via an A kinase-anchoring protein (AKAP15). However, the mechanism by which AKAP15 targets PKA to L-type Ca(2+) channels has not been elucidated. Here we report that AKAP15 directly interacts with the C-terminal domain of the alpha(1) subunit of Ca(V)1.1 via a leucine zipper (LZ) motif. Disruption of the LZ interaction effectively inhibits voltage-dependent potentiation of L-type Ca(2+) channels in skeletal muscle cells. Our results reveal a novel mechanism whereby anchoring of PKA to Ca(2+) channels via LZ interactions ensures rapid and efficient phosphorylation of Ca(2+) channels in response to local signals such as cAMP and depolarization.  (+info)

Characterization of RII(beta) and D-AKAP1 in differentiated adipocytes. (62/496)

A-kinase anchoring proteins (AKAPs) have been proposed to regulate cAMP-dependent signaling in the cell by targeting RII subunits of protein kinase A (PKA) to specific subcellular compartments. RII(beta) is the predominant PKA subtype in adipose tissue. In gel overlay assays of C3H/10T1/2 adipocytes and adipose tissue, RII(beta) bound to several proteins including a prominent 132-kDa band, which was strongly induced upon differentiation of C3H/10T1/2 cells into adipocytes. Immunoblotting and nuclease protection analysis of C3H/10T1/2 cellular extracts identified this band as D-AKAP1/S-AKAP84, a putative AKAP. Immunocytochemical analysis of C3H/10T1/2 adipocytes revealed that most of D-AKAP1/S-AKAP84, but not RII(beta), was colocalized with a mitochondrial-selective dye, MitoTracker red. These findings were further confirmed in studies where D-AKAP1/ S-AKAP84, but not RII(beta), were localized in purified mitochondria made from C3H/10T1/2 adipocytes. Moreover, D-AKAP1, which is upregulated after differentiation, did not recruit RII(beta) to membrane fractions enriched in mitochondria. These results demonstrate that D-AKAP1/S-AKAP84 does not interact with PKA in differentiated C3H/10T1/2 adipocytes under the conditions tested.  (+info)

Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. (63/496)

Coating of the X chromosome by Xist RNA is an essential trigger for X inactivation. However, little is known about the early chromatin remodeling events that transform this signal into transcriptional silencing. Here we report that methylation of histone H3 lysine 9 on the inactive X chromosome occurs immediately after Xist RNA coating and before transcriptional inactivation of X-linked genes. X-chromosomal H3 Lys-9 methylation occurs during the same window of time as H3 Lys-9 hypoacetylation and H3 Lys-4 hypomethylation. Histone H3 modifications thus represent the earliest known chromatin changes during X inactivation. We also identify a unique "hotspot" of H3 Lys-9 methylation 5' to Xist, and we propose that this acts as a nucleation center for Xist RNA-dependent spread of inactivation along the X chromosome via H3 Lys-9 methylation.  (+info)

Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. (64/496)

Sympathetic nervous system (SNS) regulation of cardiac action potential duration (APD) is mediated by beta adrenergic receptor (betaAR) activation, which increases the slow outward potassium ion current (IKS). Mutations in two human I(KS) channel subunits, hKCNQ1 and hKCNE1, prolong APD and cause inherited cardiac arrhythmias known as LQTS (long QT syndrome). We show that betaAR modulation of I(KS) requires targeting of adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase (PKA) and protein phosphatase 1 (PP1) to hKCNQ1 through the targeting protein yotiao. Yotiao binds to hKCNQ1 by a leucine zipper motif, which is disrupted by an LQTS mutation (hKCNQ1-G589D). Identification of the hKCNQ1 macromolecular complex provides a mechanism for SNS modulation of cardiac APD through IKS.  (+info)