From atomic to mesoscopic descriptions of the internal dynamics of DNA. (1/3649)

An analysis of four 1-ns molecular dynamics trajectories for two different 15-bp oligonucleotides is presented. Our aim is to show which groups of atoms can be treated as rigid bodies within a bead representation of DNA, independently of the base sequence and for any conformations belonging to the A/B family. Five models with moderate intragroup deformations are proposed in which the groups are formed of atoms belonging to a single nucleotide or to a complementary nucleotide pair. The influence of group deformation in two of these models is studied using canonical correlation analysis, and it is shown that the internal DNA dynamics is indeed dominated by the rigid motion of the defined atom groups. Finally, using one of the models within a bead representation of duplex DNA makes it possible to obtain stretching, torsional, and bending rigidities in reasonable agreement with experiment but points to strongly correlated stretching motions.  (+info)

Molecular dynamics of synthetic leucine-serine ion channels in a phospholipid membrane. (2/3649)

Molecular dynamics calculations were carried out on models of two synthetic leucine-serine ion channels: a tetrameric bundle with sequence (LSLLLSL)(3)NH(2) and a hexameric bundle with sequence (LSSLLSL)(3)NH(2). Each protein bundle is inserted in a palmitoyloleoylphosphatidylcholine bilayer membrane and solvated by simple point charge water molecules inside the pore and at both mouths. Both systems appear to be stable in the absence of an electric field during the 4 ns of molecular dynamics simulation. The water motion in the narrow pore of the four-helix bundle is highly restricted and may provide suitable conditions for proton transfer via a water wire mechanism. In the wider hexameric pore, the water diffuses much more slowly than in bulk but is still mobile. This, along with the dimensions of the pore, supports the observation that this peptide is selective for monovalent cations. Reasonable agreement of predicted conductances with experimentally determined values lends support to the validity of the simulations.  (+info)

Combined Monte Carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers. (3/3649)

We have applied a new equilibration procedure for the atomic level simulation of a hydrated lipid bilayer to hydrated bilayers of dioleyl-phosphatidylcholine (DOPC) and palmitoyl-oleyl phosphatidylcholine (POPC). The procedure consists of alternating molecular dynamics trajectory calculations in a constant surface tension and temperature ensemble with configurational bias Monte Carlo moves to different regions of the configuration space of the bilayer in a constant volume and temperature ensemble. The procedure is applied to bilayers of 128 molecules of POPC with 4628 water molecules, and 128 molecules of DOPC with 4825 water molecules. Progress toward equilibration is almost three times as fast in central processing unit (CPU) time compared with a purely molecular dynamics (MD) simulation. Equilibration is complete, as judged by the lack of energy drift in 200-ps runs of continuous MD. After the equilibrium state was reached, as determined by agreement between the simulation volume per lipid molecule with experiment, continuous MD was run in an ensemble in which the lateral area was restrained to fluctuate about a mean value and a pressure of 1 atm applied normal to the bilayer surface. Three separate continuous MD runs, 200 ps in duration each, separated by 10,000 CBMC steps, were carried out for each system. Properties of the systems were calculated and averaged over the three separate runs. Results of the simulations are presented and compared with experimental data and with other recent simulations of POPC and DOPC. Analysis of the hydration environment in the headgroups supports a mechanism by which unsaturation contributes to reduced transition temperatures. In this view, the relatively horizontal orientation of the unsaturated bond increases the area per lipid, resulting in increased water penetration between the headgroups. As a result the headgroup-headgroup interactions are attenuated and shielded, and this contributes to the lowered transition temperature.  (+info)

Molecular dynamics study of the KcsA potassium channel. (4/3649)

The structural, dynamical, and thermodynamic properties of a model potassium channel are studied using molecular dynamics simulations. We use the recently unveiled protein structure for the KcsA potassium channel from Streptomyces lividans. Total and free energy profiles of potassium and sodium ions reveal a considerable preference for the larger potassium ions. The selectivity of the channel arises from its ability to completely solvate the potassium ions, but not the smaller sodium ions. Self-diffusion of water within the narrow selectivity filter is found to be reduced by an order of magnitude from bulk levels, whereas the wider hydrophobic section of the pore maintains near-bulk self-diffusion. Simulations examining multiple ion configurations suggest a two-ion channel. Ion diffusion is found to be reduced to approximately 1/3 of bulk diffusion within the selectivity filter. The reduced ion mobility does not hinder the passage of ions, as permeation appears to be driven by Coulomb repulsion within this multiple ion channel.  (+info)

Permeation of ions across the potassium channel: Brownian dynamics studies. (5/3649)

The physical mechanisms underlying the transport of ions across a model potassium channel are described. The shape of the model channel corresponds closely to that deduced from crystallography. From electrostatic calculations, we show that an ion permeating the channel, in the absence of any residual charges, encounters an insurmountable energy barrier arising from induced surface charges. Carbonyl groups along the selectivity filter, helix dipoles near the oval chamber, and mouth dipoles near the channel entrances together transform the energy barrier into a deep energy well. Two ions are attracted to this well, and their presence in the channel permits ions to diffuse across it under the influence of an electric field. Using Brownian dynamics simulations, we determine the magnitude of currents flowing across the channel under various conditions. The conductance increases with increasing dipole strength and reaches its maximum rapidly; a further increase in dipole strength causes a steady decrease in the channel conductance. The current also decreases systematically when the effective dielectric constant of the channel is lowered. The conductance with the optimal choice of dipoles reproduces the experimental value when the dielectric constant of the channel is assumed to be 60. The current-voltage relationship obtained with symmetrical solutions is linear when the applied potential is less than approximately 100 mV but deviates from Ohm's law at a higher applied potential. The reversal potentials obtained with asymmetrical solutions are in agreement with those predicted by the Nernst equation. The conductance exhibits the saturation property observed experimentally. We discuss the implications of these findings for the transport of ions across the potassium channels and membrane channels in general.  (+info)

Molecular dynamics of retinoic acid-induced craniofacial malformations: implications for the origin of gnathostome jaws. (6/3649)

BACKGROUND: Intake of retinoic acid (RA) or of its precursor, vitamin A, during early pregnancy is associated with increased incidence of craniofacial lesions. The origin of these teratogenic effects remains enigmatic as in cranial neural crest cells (CNCCs), which largely contribute to craniofacial structures, the RA-transduction pathway is not active. Recent results suggest that RA could act on the endoderm of the first pharyngeal arch (1stPA), through a RARbeta-dependent mechanism. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that RA provokes dramatically different craniofacial malformations when administered at slightly different developmental times within a narrow temporal interval corresponding to the colonization of the 1(st) PA by CNCCs. We provide evidence showing that RA acts on the signalling epithelium of the 1(st) PA, gradually reducing the expression of endothelin-1 and Fgf8. These two molecular signals are instrumental in activating Dlx genes in incoming CNCCs, thereby triggering the morphogenetic programs, which specify different jaw elements. CONCLUSIONS/SIGNIFICANCE: The anatomical series induced by RA-treatments at different developmental times parallels, at least in some instances, the supposed origin of modern jaws (e.g., the fate of the incus). Our results might provide a conceptual framework for the rise of jaw morphotypes characteristic of gnathostomes.  (+info)

Computer-aided lead optimization: improved small-molecule inhibitor of the zinc endopeptidase of botulinum neurotoxin serotype A. (7/3649)

Optimization of a serotype-selective, small-molecule inhibitor of botulinum neurotoxin serotype A (BoNTA) endopeptidase is a formidable challenge because the enzyme-substrate interface is unusually large and the endopeptidase itself is a large, zinc-binding protein with a complex fold that is difficult to simulate computationally. We conducted multiple molecular dynamics simulations of the endopeptidase in complex with a previously described inhibitor (K(i) (app) of 7+/-2.4 microM) using the cationic dummy atom approach. Based on our computational results, we hypothesized that introducing a hydroxyl group to the inhibitor could improve its potency. Synthesis and testing of the hydroxyl-containing analog as a BoNTA endopeptidase inhibitor showed a twofold improvement in inhibitory potency (K(i) (app) of 3.8+/-0.8 microM) with a relatively small increase in molecular weight (16 Da). The results offer an improved template for further optimization of BoNTA endopeptidase inhibitors and demonstrate the effectiveness of the cationic dummy atom approach in the design and optimization of zinc protease inhibitors.  (+info)

Automated builder and database of protein/membrane complexes for molecular dynamics simulations. (8/3649)

Molecular dynamics simulations of membrane proteins have provided deeper insights into their functions and interactions with surrounding environments at the atomic level. However, compared to solvation of globular proteins, building a realistic protein/membrane complex is still challenging and requires considerable experience with simulation software. Membrane Builder in the CHARMM-GUI website (http://www.charmm-gui.org) helps users to build such a complex system using a web browser with a graphical user interface. Through a generalized and automated building process including system size determination as well as generation of lipid bilayer, pore water, bulk water, and ions, a realistic membrane system with virtually any kinds and shapes of membrane proteins can be generated in 5 minutes to 2 hours depending on the system size. Default values that were elaborated and tested extensively are given in each step to provide reasonable options and starting points for both non-expert and expert users. The efficacy of Membrane Builder is illustrated by its applications to 12 transmembrane and 3 interfacial membrane proteins, whose fully equilibrated systems with three different types of lipid molecules (DMPC, DPPC, and POPC) and two types of system shapes (rectangular and hexagonal) are freely available on the CHARMM-GUI website. One of the most significant advantages of using the web environment is that, if a problem is found, users can go back and re-generate the whole system again before quitting the browser. Therefore, Membrane Builder provides the intuitive and easy way to build and simulate the biologically important membrane system.  (+info)