Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. (1/14262)

The rice homeobox gene OSH15 (Oryza sativa homeobox) is a member of the knotted1-type homeobox gene family. We report here on the identification and characterization of a loss-of-function mutation in OSH15 from a library of retrotransposon-tagged lines of rice. Based on the phenotype and map position, we have identified three independent deletion alleles of the locus among conventional morphological mutants. All of these recessive mutations, which are considered to be null alleles, exhibit defects in internode elongation. Introduction of a 14 kbp genomic DNA fragment that includes all exons, introns and 5'- and 3'- flanking sequences of OSH15 complemented the defects in internode elongation, confirming that they were caused by the loss-of-function of OSH15. Internodes of the mutants had abnormal-shaped epidermal and hypodermal cells and showed an unusual arrangement of small vascular bundles. These mutations demonstrate a role for OSH15 in the development of rice internodes. This is the first evidence that the knotted1-type homeobox genes have roles other than shoot apical meristem formation and/or maintenance in plant development.  (+info)

Enhanced resistance to bacterial diseases of transgenic tobacco plants overexpressing sarcotoxin IA, a bactericidal peptide of insect. (2/14262)

Sarcotoxin IA is a bactericidal peptide of 39 amino acids found in the common flesh fly, Sarcophaga peregrina. Many agronomically important bacteria in Japan are killed by this peptide at sub-micro molar levels, and the growth of tobacco and rice suspension cultured cells is not inhibited with less than 25 microM. Transgenic tobacco plants which overexpress the peptide, i.e. over 250 pmol per gram of fresh leaf, under the control of a high expression constitutive promoter showed enhanced resistance to the pathogens for wild fire disease (Pseudomonas syringae pv. tabaci) and bacterial soft rot disease (Erwinia carotovora subsp. carotovora).  (+info)

Male gametic cell-specific gene expression in flowering plants. (3/14262)

The role of the male gamete-the sperm cell-in the process of fertilization is to recognize, adhere to, and fuse with the female gamete. These highly specialized functions are expected to be controlled by activation of a unique set of genes. However, male gametic cells traditionally have been regarded as transcriptionally quiescent because of highly condensed chromatin and a very reduced amount of cytoplasm. Here, we provide evidence for male gamete-specific gene expression in flowering plants. We identified and characterized a gene, LGC1, which was shown to be expressed exclusively in the male gametic cells. The gene product of LGC1 was localized at the surface of male gametic cells, suggesting a possible role in sperm-egg interactions. These findings represent an important step toward defining the molecular mechanisms of male gamete development and the cellular processes involved in fertilization of flowering plants.  (+info)

Novel genes induced during an arbuscular mycorrhizal (AM) symbiosis formed between Medicago truncatula and Glomus versiforme. (4/14262)

Many terrestrial plant species are able to form symbiotic associations with arbuscular mycorrhizal fungi. Here we have identified three cDNA clones representing genes whose expression is induced during the arbuscular mycorrhizal symbiosis formed between Medicago truncatula and an arbuscular mycorrhizal fungus, Glomus versiforme. The three clones represent M. truncatula genes and encode novel proteins: a xyloglucan endotransglycosylase-related protein, a putative arabinogalactan protein (AGP), and a putative homologue of the mammalian p110 subunit of initiation factor 3 (eIF3). These genes show little or no expression in M. truncatula roots prior to formation of the symbiosis and are significantly induced following colonization by G. versiforme. The genes are not induced in roots in response to increases in phosphate. This suggests that induction of expression during the symbiosis is due to the interaction with the fungus and is not a secondary effect of improved phosphate nutrition. In situ hybridization revealed that the putative AGP is expressed specifically in cortical cells containing arbuscules. The identification of two mycorrhiza-induced genes encoding proteins predicted to be involved in cell wall structure is consistent with previous electron microscopy data that indicated major alterations in the extracellular matrix of the cortical cells following colonization by mycorrhizal fungi.  (+info)

A novel 53-kDa nodulin of the symbiosome membrane of soybean nodules, controlled by Bradyrhizobium japonicum. (5/14262)

A nodule-specific 53-kDa protein (GmNOD53b) of the symbiosome membrane from soybean was isolated and its LysC digestion products were microsequenced. cDNA clones of this novel nodulin, obtained from cDNA library screening with an RT-PCR (reverse-transcriptase polymerase chain reaction)-generated hybridization probe exhibited no homology to proteins identified so far. The expression of GmNOD53b coincides with the onset of nitrogen fixation. Therefore, it is a late nodulin. Among other changes, the GmNOD53b is significantly reduced in nodules infected with the Bradyrhizobium japonicum mutant 184 on the protein level as well as on the level of mRNA expression, compared with the wild-type infected nodules. The reduction of GmNOD53b mRNA is related to an inactivation of the sipF gene in B. japonicum 184, coding for a functionally active signal peptidase.  (+info)

The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. (6/14262)

In Arabidopsis embryogenesis, the primary root meristem originates from descendants of both the apical and the basal daughter cell of the zygote. We have isolated a mutant of a new gene named BODENLOS (BDL) in which the primary root meristem is not formed whereas post-embryonic roots develop and bdl seedlings give rise to fertile adult plants. Some bdl seedlings lacked not only the root but also the hypocotyl, thus resembling monopteros (mp) seedlings. In addition, bdl seedlings were insensitive to the auxin analogue 2,4-D, as determined by comparison with auxin resistant1 (axr1) seedlings. bdl embryos deviated from normal development as early as the two-cell stage at which the apical daughter cell of the zygote had divided horizontally instead of vertically. Subsequently, the uppermost derivative of the basal daughter cell, which is normally destined to become the hypophysis, divided abnormally and failed to generate the quiescent centre of the root meristem and the central root cap. We also analysed double mutants. bdl mp embryos closely resembled the two single mutants, bdl and mp, at early stages, while bdl mp seedlings essentially consisted of hypocotyl but did form primary leaves. bdl axr1 embryos approached the mp phenotype at later stages, and bdl axr1 seedlings resembled mp seedlings. Our results suggest that BDL is involved in auxin-mediated processes of apical-basal patterning in the Arabidopsis embryo.  (+info)

NADH-glutamate synthase in alfalfa root nodules. Genetic regulation and cellular expression. (7/14262)

NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) is a key enzyme in primary nitrogen assimilation in alfalfa (Medicago sativa L.) root nodules. Here we report that in alfalfa, a single gene, probably with multiple alleles, encodes for NADH-GOGAT. In situ hybridizations were performed to assess the location of NADH-GOGAT transcript in alfalfa root nodules. In wild-type cv Saranac nodules the NADH-GOGAT gene is predominantly expressed in infected cells. Nodules devoid of bacteroids (empty) induced by Sinorhizobium meliloti 7154 had no NADH-GOGAT transcript detectable by in situ hybridization, suggesting that the presence of the bacteroid may be important for NADH-GOGAT expression. The pattern of expression of NADH-GOGAT shifted during root nodule development. Until d 9 after planting, all infected cells appeared to express NADH-GOGAT. By d 19, a gradient of expression from high in the early symbiotic zone to low in the late symbiotic zone was observed. In 33-d-old nodules expression was seen in only a few cell layers in the early symbiotic zone. This pattern of expression was also observed for the nifH transcript but not for leghemoglobin. The promoter of NADH-GOGAT was evaluated in transgenic alfalfa plants carrying chimeric beta-glucuronidase promoter fusions. The results suggest that there are at least four regulatory elements. The region responsible for expression in the infected cell zone contains an 88-bp direct repeat.  (+info)

A single limit dextrinase gene is expressed both in the developing endosperm and in germinated grains of barley. (8/14262)

The single gene encoding limit dextrinase (pullulan 6-glucanohydrolase; EC 3.2.1.41) in barley (Hordeum vulgare) has 26 introns that range in size from 93 to 822 base pairs. The mature polypeptide encoded by the gene has 884 amino acid residues and a calculated molecular mass of 97,417 D. Limit dextrinase mRNA is abundant in gibberellic acid-treated aleurone layers and in germinated grain. Gibberellic acid response elements were found in the promoter region of the gene. These observations suggest that the enzyme participates in starch hydrolysis during endosperm mobilization in germinated grain. The mRNA encoding the enzyme is present at lower levels in the developing endosperm of immature grain, a location consistent with a role for limit dextrinase in starch synthesis. Enzyme activity was also detected in developing grain. The limit dextrinase has a presequence typical of transit peptides that target nascent polypeptides to amyloplasts, but this would not be expected to direct secretion of the mature enzyme from aleurone cells in germinated grain. It remains to be discovered how the enzyme is released from the aleurone and whether another enzyme, possibly of the isoamylase group, might be equally important for starch hydrolysis in germinated grain.  (+info)