Hyperaldosteronemia in rabbits inhibits the cardiac sarcolemmal Na(+)-K(+) pump. (1/86)

Aldosterone upregulates the Na(+)-K(+) pump in kidney and colon, classical target organs for the hormone. An effect on pump function in the heart is not firmly established. Because the myocardium contains mineralocorticoid receptors, we examined whether aldosterone has an effect on Na(+)-K(+) pump function in cardiac myocytes. Myocytes were isolated from rabbits given aldosterone via osmotic minipumps and from controls. Electrogenic Na(+)-K(+) pump current, arising from the 3:2 Na(+):K(+) exchange ratio, was measured in single myocytes using the whole-cell patch clamp technique. Treatment with aldosterone induced a decrease in pump current measured when myocytes were dialyzed with patch pipette solution containing Na(+) in a concentration of 10 mmol/L, whereas there was no effect measured when the solution contained 80 mmol/L Na(+). Aldosterone had no effect on myocardial Na(+)-K(+) pump concentration evaluated by vanadate-facilitated [(3)H]ouabain binding or by K(+)-dependent paranitrophenylphosphatase activity in crude homogenates. Aldosterone induced an increase in intracellular Na(+) activity. The aldosterone-induced decrease in pump current and increased intracellular Na(+) were prevented by cotreatment with the mineralocorticoid receptor antagonist spironolactone. Our results indicate that hyperaldosteronemia decreases the apparent Na(+) affinity of the Na(+)-K(+) pump, whereas it has no effect on maximal pump capacity.  (+info)

Alphabeta protomers of Na+,K+-ATPase from microsomes of duck salt gland are mostly monomeric: formation of higher oligomers does not modify molecular activity. (2/86)

The distance that separates alphabeta protomers of the Na(+), K(+)-ATPase in microsomes and in purified membranes prepared from duck nasal salt glands was estimated by measuring fluorescence resonance energy transfer between anthroylouabain bound to a population of alphabeta protomers and either N-[7-nitrobenz-2-oxa-1, 3-diazol-4-yl]-6-aminohexyl ouabain or 5-(and-6)-carboxyfluorescein-6-aminohexyl ouabain bound to the rest. Energy transfer between probes bound in the microsomal preparation was less than in the purified membranes. The efficiency of energy transfer between anthroylouabain and N-[7-nitrobenz-2-oxa-1, 3-diazol-4-yl]-6-aminohexyl ouabain was 29.2% in the microsomes compared with 62.6% in the purified preparation. Similar results were obtained with 5-(and-6)-carboxyfluorescein-6-aminohexyl ouabain as acceptor. We calculate that either the protomer bound probes were on the average 13 A farther apart in the microsomes than in the purified membranes, or that 53% of the protomers are monomeric in the microsome preparation. Microsomes prepared in the presence of phalloidin (a toxin that binds to F actin and stabilizes the actin-based cytoskeleton) showed less quench than those prepared in its absence. The data support the hypothesis that protomers are kept apart by their association with the cytoskeleton. The turnover rate while hydrolyzing ATP is the same in the microsomal and purified preparations; higher oligomer formation has no significant effect on the enzyme reaction mechanism.  (+info)

HMG CoA reductase inhibition reduces sarcolemmal Na(+)-K(+) pump density. (3/86)

OBJECTIVES: HMG CoA reductase inhibitors reduce cellular availability of mevalonate, a precursor in cholesterol synthesis. Since the cholesterol content of cell membranes is an important determinant of Na(+)-K(+) pump function we speculated that treatment with HMG CoA reductase inhibitors affects Na(+)-K(+) pump activity. METHODS: We treated rabbits and rats for 2 weeks with the HMG CoA reductase inhibitor lovastatin and measured Na(+)-K(+) pump current (I(p)) in isolated rabbit cardiac myocytes using the whole cell patch-clamp technique, K-dependent p-nitrophenyl phosphatase (p-NPPase) activity in crude myocardial and skeletal muscle homogenates, and vanadate-facilitated 3H-ouabain binding in intact skeletal muscle samples from rats. RESULTS: Treatment with lovastatin caused statistically significant reductions in I(p), myocardial and skeletal muscle K-dependent p-NPPase activity and 3H-ouabain binding in the myocardium and skeletal muscle. The lovastatin-induced decrease in I(p) was eliminated by parenteral co-administration of mevalonate. However, this was not related to cardiac cholesterol content. CONCLUSIONS: Treatment with lovastatin reduces Na(+)-K(+) pump activity and abundance in rabbit and rat sarcolemma.  (+info)

Structural and immunological similarities between high molecular weight zinc ion-dependent p-nitrophenylphosphatase and fructose-1,6-bisphosphate aldolase from bovine liver. (4/86)

High molecular weight zinc ion-dependent acid p-nitrophenylphosphatase (HMW-ZnAPase) was purified from bovine liver to homogeneity as judged by native and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The partial sequence of the purified enzyme electroblotted on PVDF membrane reveals a 95% sequence homology with human and bovine liver fructose-1,6-bisphosphate aldolase isozyme B (FALD B). FALD B was isolated from bovine liver using an affinity elution from phosphocellulose column. FALD B from bovine liver shows a native and subunit molecular weight that is indistinguishable from that of HMW-ZnAPase. In addition, an affinity purified antiserum raised in rabbits against purified HMW-ZnAPase cross-reacts with bovine liver FALD B and rabbit muscle isozymes. Despite these similarities, HMW-ZnAPase does not show FALD activity and bovine liver FALD does not display any zinc ion-p-nitrophenylphosphatase activity. These results suggested the existence of structural and immunological similarities between bovine liver HMW-ZnAPase and FALD B. Differences in some amino acid residues in enzyme activity indicate that they may be involved in different biochemical functions.  (+info)

p-Nitrophenylphosphatase activity catalyzed by plasma membrane (Ca(2+) + Mg(2+)ATPase: correlation with structural changes modulated by glycerol and Ca(2+). (5/86)

The plasma membrane (Ca(2+) + Mg(2+))ATPase hydrolyzes pseudo-substrates such as p-nitrophenylphosphate. Except when calmodulin is present, Ca(2+) ions inhibit the p-nitrophenylphosphatase activity. In this report it is shown that, in the presence of glycerol, Ca(2+) strongly stimulates phosphatase activity in a dose-dependent manner. The glycerol- and Ca(2+)-induced increase in activity is correlated with modifications in the spectral center of mass (average emission wavenumber) of the intrinsic fluorescence of the enzyme. It is concluded that the synergistic effect of glycerol and Ca(2+) is related to opposite long-term hydration effects on the substrate binding domain and the Ca(2+) binding domain.  (+info)

Characterization of a novel mammalian phosphatase having sequence similarity to Schizosaccharomyces pombe PHO2 and Saccharomyces cerevisiae PHO13. (6/86)

p34, a specific p-nitrophenyl phosphatase (pNPPase) was identified and purified from the murine cell line EL4 in a screen for the intracellular molecular targets of the antiinflammatory natural product parthenolide. A BLAST search analysis revealed that it has a high degree of sequence similarity to two yeast alkaline phosphatases. We have cloned, sequenced, and expressed p34 as a GST-tagged fusion protein in Escherichia coli and an EE-epitope-tagged fusion protein in mammalian cells. Using p-nitrophenyl phosphate (pNPP) as a substrate, p34 is optimally active at pH 7.6 with a K(m) of 1.36 mM and K(cat) of 0.052 min(-1). Addition of 1 mM Mg(2+) to the reaction mixture increases its activity by 14-fold. Other divalent metal ions such as Co(2+) and Mn(2+) also stimulated the activity of the enzyme, while Zn(2+), Fe(2+), and Cu(2+) had no effect. Furthermore, both NaCl and KCl enhanced the activity of the enzyme, having maximal effect at 50 and 75 mM, respectively. The enzyme is inhibited by sodium orthovanadate but not by sodium fluoride or okadaic acid. Mutational analysis data suggest that p34 belongs to the group of phosphatases characterized by the sequence motif DXDX(T/V).  (+info)

Transepithelial potential in mesonephric nephrons of 7-day-old chick embryos in relation to the histochemically detected sodium pump. (7/86)

In order to obtain basic information on the transport properties of differentiating embryonic nephrons, we examined the 7-day-old chick mesonephros by measuring the transtubular epithelial potential difference (TPD) and by histochemical detection of Na,K-ATPase activity. TPD as an indicator of the electrogenic transport was measured in individual segments of superficial nephrons in vivo. Their electric polarity was always lumen-negative. TPD was reduced by addition of 10 mM KCN applied to the mesonephric nephrons from the outside. In the proximal tubules, TPD was significantly lower (mean+/-SD: -1.0+/-0.5 mV) than in the distal and collecting tubules (-2.2+/-1.0 mV, p< or =0.05). Activity of the sodium pump was evaluated histochemically by detection of ouabain-sensitive potassium-dependent p-nitrophenyl phosphatase in cryostat sections of the mesonephros. The enzyme activity was demonstrated only in distal tubules and in the collecting ducts, but not in the proximal tubules. These findings have revealed significant differences between embryonic nephron segments: the distal tubule, in contrast to the proximal one, is supplied by the sodium pump and is able to generate higher TPD. Therefore, we consider that it is only the distal nephron, which possesses the ability of active transport.  (+info)

Cytochemistry of protein kinase C and Na-K-ATPase in rabbit ciliary processes treated with phorbol ester. (8/86)

Immunocytochemical localization of protein kinase C (PKC) in rabbit ciliary processes was investigated using anti-PKC monoclonal antibodies (MAbs) against rabbit Types 1, 2, and 3 PKC. Specific immunolabeling was observed in nonpigmented epithelial (NPE) cells and in the capillaries of the ciliary processes with anti-Types 2 and 3 MAbs. No apparent staining was seen with anti-Type 1 MAbs. Immunoelectron microscopy of Types 2 and 3 MAbs revealed a diffuse distribution of immunoreactive PKC in the cytoplasm, in the nucleus, and on the plasma membrane in the NPE cells. When incubated with phorbol 12-myristate 13-acetate (PMA), the distribution of PKC was basically similar to that of the untreated group. However, the labelling density on the plasma membrane at basolateral interdigitation increased considerably for anti-Types 2 and 3 PKC MAbs. In addition, the enzyme cytochemical activity of Na-K-ATPase (ouabain-sensitive K-NPPase) and its change after PMA administration in the ciliary processes were observed. An intense reaction was seen on the basolateral plasma membrane of the NPE cells. In the PMA-treated group, the enzyme activity of Na-K-ATPase apparently was decreased. These findings provide evidence that PKC plays a crucial role in the function of the NPE cells of the ciliary processes, possibly in aqueous humor production.  (+info)