Hyperketonemia can increase lipid peroxidation and lower glutathione levels in human erythrocytes in vitro and in type 1 diabetic patients. (9/526)

Recent studies have suggested that elevated cellular lipid peroxidation may play a role in the development of cellular dysfunction and other complications of diabetes. People with type 1 diabetes frequently encounter elevated levels of the ketone bodies acetoacetate (AA), beta-hydroxybutyrate (BHB), and acetone (ACE). This study was undertaken to test the hypothesis that ketosis might increase lipid peroxidation and lower glutathione (GSH) levels of red blood cells (RBCs) in diabetic patients. This study demonstrates that incubation of AA with normal RBCs in phosphate-buffered saline (37 degrees C for 24 h) resulted in marked GSH depletion, oxidized glutathione accumulation, hydroxyl radical generation, and increased membrane lipid peroxidation. Increases in oxygen radicals and lipid peroxidation and depletion of GSH in RBCs were not observed with BHB or ACE treatments. Similarly, there was a significant generation of superoxide ion radicals even in a cell-free buffer solution of AA, but not in that of BHB. The presence of BHB together with AA did not influence the capacity of AA to generate oxygen radicals in a cell-free solution or the increase in lipid peroxidation of RBCs incubated with AA. The antioxidants vitamin E and N-acetylcysteine (NAC) blocked increase in lipid peroxidation in AA-treated RBCs. To examine the effects of ketone bodies in vivo, studies were performed that showed a significant decrease in GSH and an increase in lipid peroxidation levels in RBCs of hyperketonemic diabetic patients, but not in normoketonemic type 1 diabetic patients, when compared with age-matched normal subjects. This study demonstrates that elevated levels of the ketone body AA can increase lipid peroxidation and lower GSH levels of RBCs in people with type 1 diabetes.  (+info)

Effect of hypocalcaemia on glucose metabolism in hyperketonaemic piglets. (10/526)

In nine 2- to 3-month-old hyperketonaemic piglets the kinetics of glucose and D-beta-hydroxybutyrate (D-BHB) metabolism were studied during hypo- and normocalcaemia in paired experiments. Hyperketonaemia (1.3 and 2.5 mmol D-BHB (l plasma)-1) was generated by a stepwise increase of DL-BHB infusion. Hypocalcaemia spontaneously developed in five piglets due to an inherited calcitriol deficiency and was induced in four control piglets by a continuous infusion of Na2-EDTA. The method of single isotopic marker injections of glucose and D-BHB was used to calculate replacement rates, rate constants and half-lives of glucose and D-BHB in plasma. When DL-BHB was infused at the same rate into normo- and hypocalcaemic piglets, hypocalcaemia reduced the rate constant of glucose by 20-30% and the replacement rate of glucose by 34%. In the presence of hyperketonaemia, hypocalcaemia increased the rate of replacement of D-BHB by 6-40%. The replacement rate represents the sum of endogenous production and the rate of DL-BHB infusion. This observation shows that the endogenous production of D-BHB was higher during hypocalcaemia than during normocalcaemia.  (+info)

High-level production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. (11/526)

Fermentation strategies for production of high concentrations of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] with different 3-hydroxyvalerate (3HV) fractions by recombinant Escherichia coli harboring the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes were developed. Fed-batch cultures of recombinant E. coli with the pH-stat feeding strategy facilitated production of high concentrations and high contents of P(3HB-co-3HV) in a chemically defined medium. When a feeding solution was added in order to increase the glucose and propionic acid concentrations to 20 g/liter and 20 mM, respectively, after each feeding, a cell dry weight of 120.3 g/liter and a relatively low P(3HB-co-3HV) content, 42.5 wt%, were obtained. Accumulation of a high residual concentration of propionic acid in the medium was the reason for the low P(3HB-co-3HV) content. An acetic acid induction strategy was used to stimulate the uptake and utilization of propionic acid. When a fed-batch culture and this strategy were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 141.9 g/liter, 88.1 g/liter, 62.1 wt%, and 15.3 mol%, respectively. When an improved nutrient feeding strategy, acetic acid induction, and oleic acid supplementation were used, we obtained a cell concentration, a P(3HB-co-3HV) concentration, a P(3HB-co-3HV) content, and a 3HV fraction of 203.1 g/liter, 158.8 g/liter, 78.2 wt%, and 10.6 mol%, respectively; this resulted in a high level of productivity, 2.88 g of P(3HB-co-3HV)/liter-h.  (+info)

Use of structured triacylglycerols containing predominantly stearic and oleic acids to probe early events in metabolic processing of dietary fat. (12/526)

Early events in the metabolic processing of dietary triacylglycerol may have an important impact on subsequent development of risk factors for coronary heart disease. We have used structured triacylglycerols containing predominantly stearic or oleic acids at the sn -2 position to probe aspects of the processing of dietary fatty acids presented to adipose tissue in chylomicron-triacylglycerol. Studies were conducted on 14 healthy women who were given meals containing 85 g carbohydrate and 60 g of either of the two structured triacylglycerols in random order. Systemic concentrations and arterio-venous differences across adipose tissue for plasma triacylglycerol and non-esterified fatty acids were measured, together with analysis of the fatty acid composition of the relevant fractions. The stereo-specific structure of the ingested triacylglycerol was largely preserved in chylomicron-triacylglycerol. Systemic concentrations of total and individual non-esterified fatty acids were not significantly different after ingestion of the two fats, nor were their rates of release across adipose tissue. The composition of non-esterified fatty acids released from adipose tissue changed after the meal to reflect more closely the composition of the triacylglycerol ingested, but again no significant differences were observed between the two test meals. There was no detectable release of monoacylglycerol from adipose tissue after either test meal. We conclude that the environment for lipoprotein lipase action in adipose tissue in vivo is likely to be highly organized, such that there is no release of monoacylglycerol, nor preferential uptake or release of fatty acids from chylomicron-triacylglycerol according to the nature or the position within triacylglycerol of the fatty acid.  (+info)

Metabolic impact of glucokinase overexpression in liver: lowering of blood glucose in fed rats is accompanied by hyperlipidemia. (13/526)

The balance between hepatic glucose uptake and production is perturbed in both major forms of diabetes. It has been suggested that pharmacologic or genetic methods for enhancing glucokinase (GK) enzymatic activity in liver might be a means of increasing glucose disposal and lowering blood glucose in diabetic patients. To better evaluate this possibility, we used a recombinant adenovirus containing the cDNA encoding GK (AdCMV-GKL) to achieve overexpression of the enzyme at different levels in liver of normal rats. In a first set of experiments, in rats fasted for 18 h, AdCMV-GKL infusion caused a 211% increase in hepatic GK activity relative to animals infused with a control virus (AdCMV-betaGAL). AdCMV-GKL-treated fasted rats exhibited no significant changes in circulating glucose, free fatty acids (FFAs), lactate, beta-hydroxybutyrate, or insulin levels relative to controls, whereas triglyceride (TG) levels were slightly increased (53%). In a second set of studies, in rats fed ad libitum, GK was overexpressed in liver by 3- and 6.4-fold. Animals with the lower degree of GK overexpression exhibited no significant changes in circulating glucose, FFAs, insulin, TG, or lactate levels relative to controls that received a virus encoding a catalytically inactive mutant GK (AdCMV-GK203), but did show a modest increase in lactate (58%) relative to AdCMV-betaGAL-infused controls. In contrast, the higher level of GK overexpression caused a 38% decrease in blood glucose levels and a 67% decrease in circulating insulin levels relative to AdCMV-GK203-infused animals. The decline in glucose levels was accompanied by a 190% increase in circulating TG and a 310% increase in circulating FFAs; total plasma cholesterol was unaffected. Finally, fasted animals treated with AdCMV-GKL had 5.4 times as much liver glycogen as AdCMV-betaGAL-treated controls; no significant increases in liver glycogen were observed at either level of GK overexpression in ad libitum-fed rats relative to fed controls. In sum, levels of hepatic GK overexpression associated with a decline in blood glucose are accompanied by equally dramatic increases in FFAs and TG, raising concerns about manipulation of liver GK activity as a viable strategy for treatment of diabetes.  (+info)

Effects of short- or long-term infusions of acetate or propionate on luteinizing hormone, insulin, and metabolite concentrations in beef heifers. (14/526)

Two trials were conducted to evaluate the effects of short- (Trial 1) or long-term (Trial 2) intraruminal isocaloric infusions of acetate or propionate on secretion of LH, insulin, and selected metabolites in short- or long-term energy-restricted beef heifers. In Trial 1, 16 Angus heifers were assigned on d 6 to 12 of a synchronized estrous cycle (estrus = d 0) to a body weight-maintenance (BWM; n = 4) or an energy-restricted, body weight-loss (BWL; n = 12) treatment. On d 12 of a synchronized estrous cycle, heifers received PGF2alpha to synchronize estrus, and 12 h later BWL heifers received intraruminal, isocaloric infusions of acetate, propionate, or vehicle for 6 h and BWM heifers received vehicle concurrently. Mean plasma LH and LH pulse frequencies and amplitudes were not affected by treatment (P > .05). In contrast, infusion of propionate increased plasma insulin (P < .05) and reduced plasma concentration of NEFA (P < .05). In Trial 2, six ovariectomized Angus heifers were energy-restricted for 30 d. On d 14 and 26 of restriction, heifers began receiving intraruminal isocaloric infusions of acetate or propionate for 96 h in a switchback approach. Intraruminal infusions of vehicle for 6 h preceded infusions of acetate or propionate. Jugular blood was collected at 12-min intervals during infusions of vehicle and during the last 6 h of infusion of acetate or propionate. Mean concentration of LH and amplitude of pulses of LH were lower during acetate vs propionate or vehicle infusion (P < .05). Infusion of propionate increased insulin relative to acetate or vehicle infusion (P < .05). Plasma NEFA were reduced by infusion of propionate (P < .05) and increased by infusion of acetate (P < .05).  (+info)

Mitochondrial redox state in the critically ill. (15/526)

Abnormal oxygen use and organ failure in the critically ill may result from 'poisoning' of mitochondrial function. Measurement of arterial ketone body ratio (AKBR) has been proposed to reflect mitochondrial redox state and may provide a useful marker to monitor mitochondrial function in the critically ill. We measured AKBR (acetoacetate to beta-hydroxybutyrate) and plasma lactate concentrations in 20 critically ill patients, on 3 consecutive days after admission to the intensive care unit. Nine (45%) patients died (five with sepsis) within the 30-day follow-up period. AKBR increased significantly over the 3 days of the study in patients who died (P = 0.034) and decreased in those who survived (P < 0.0001). In addition, there was a significant difference between survivors and non-survivors (P = 0.015). We conclude that serial AKBR measurement may be useful in the management of septic patients.  (+info)

Preexercise medium-chain triglyceride ingestion does not alter muscle glycogen use during exercise. (16/526)

This investigation determined whether ingestion of a tolerable amount of medium-chain triglycerides (MCT; approximately 25 g) reduces the rate of muscle glycogen use during high-intensity exercise. On two occasions, seven well-trained men cycled for 30 min at 84% maximal O(2) uptake. Exactly 1 h before exercise, they ingested either 1) carbohydrate (CHO; 0.72 g sucrose/kg) or 2) MCT+CHO [0.36 g tricaprin (C10:0)/kg plus 0.72 g sucrose/kg]. The change in glycogen concentration was measured in biopsies taken from the vastus lateralis before and after exercise. Additionally, glycogen oxidation was calculated as the difference between total carbohydrate oxidation and the rate of glucose disappearance from plasma (R(d) glucose), as measured by stable isotope dilution techniques. The change in muscle glycogen concentration was not different during MCT+CHO and CHO (42.0 +/- 4.6 vs. 38.8 +/- 4.0 micromol glucosyl units/g wet wt). Furthermore, calculated glycogen oxidation was also similar (331 +/- 18 vs. 329 +/- 15 micromol. kg(-1). min(-1)). The coingestion of MCT+CHO did increase (P < 0.05) R(d) glucose at rest compared with CHO (26.9 +/- 1.5 vs. 20.7 +/- 0. 7 micromol.kg(-1). min(-1)), yet during exercise R(d) glucose was not different during the two trials. Therefore, the addition of a small amount of MCT to a preexercise CHO meal did not reduce muscle glycogen oxidation during high-intensity exercise, but it did increase glucose uptake at rest.  (+info)