Influence of adenine-induced renal failure on tryptophan-niacin metabolism in rats. (1/40)

To discover the role of the kidney in tryptophan degradation, especially tryptophan to niacin, rat kidneys were injured by feeding a diet containing a large amount of adenine. The kidney contains very high activity of aminocarboxymuconate-semialdehyde decarboxylase (ACMSD), which leads tryptophan into the glutaric acid pathway and then the TCA cycle, but not to the niacin pathway. On the other hand, kidneys contain significant activity of quinolinate phosphoribosyltransferase (QPRT), which leads tryptophan into the niacin pathway. The ACMSD activity in kidneys were significantly lower in the adenine group than in the control group, while the QPRT activity was almost the same, however, the formations of niacin and its compounds such as N1-methylnicotinamide and its pyridones did not increase, and therefore, the conversion ratio of tryptophan to niacin was lower in the adenine group than in the control group. The contents of NAD and NADP in liver, kidney, and blood were also lower in the adenine group. The decreased levels of niacin and the related compounds were consistent with the changes in the enzyme activities involved in the tryptophan-niacin metabolism in liver. It was concluded from these results that the conversion of tryptophan to niacin is due to only the liver enzymes and that the role of the kidney would be extremely low.  (+info)

Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. (2/40)

Indoleamine 2,3-dioxygenase (IDO), an enzyme involved in the catabolism of tryptophan, is expressed in certain cells and tissues, particularly in antigen-presenting cells of lymphoid organs and in the placenta. It was shown that IDO prevents rejection of the fetus during pregnancy, probably by inhibiting alloreactive T cells, and it was suggested that IDO-expression in antigen-presenting cells may control autoreactive immune responses. Degradation of tryptophan, an essential amino acid required for cell proliferation, was reported to be the mechanism of IDO-induced T cell suppression. Because we wanted to study the action of IDO-expressing dendritic cells (DCs) on allogeneic T cells, the human IDO gene was inserted into an adenoviral vector and expressed in DCs. Transgenic DCs decreased the concentration of tryptophan, increased the concentration of kynurenine, the main tryptophan metabolite, and suppressed allogeneic T cell proliferation in vitro. Kynurenine, 3-hydroxykynurenine, and 3-hydroxyanthranilic acid, but no other IDO-induced tryptophan metabolites, suppressed the T cell response, the suppressive effects being additive. T cells, once stopped in their proliferation, could not be restimulated. Inhibition of proliferation was likely due to T cell death because suppressive tryptophan catabolites exerted a cytotoxic action on CD3(+) cells. This action preferentially affected activated T cells and increased gradually with exposure time. In addition to T cells, B and natural killer (NK) cells were also killed, whereas DCs were not affected. Our findings shed light on suppressive mechanisms mediated by DCs and provide an explanation for important biological processes in which IDO activity apparently is increased, such as protection of the fetus from rejection during pregnancy and possibly T cell death in HIV-infected patients.  (+info)

T cell apoptosis by tryptophan catabolism. (3/40)

Indoleamine 2,3-dioxygenase (IDO) is a tryptophan-catabolizing enzyme that, expressed by different cell types, has regulatory effects on T cells resulting from tryptophan depletion in specific local tissue microenvironments. Different mechanisms, however, might contribute to IDO-dependent immune regulation. We show here that tryptophan metabolites in the kynurenine pathway, such as 3-hydroxyanthranilic and quinolinic acids, will induce the selective apoptosis in vitro of murine thymocytes and of Th1 but not Th2 cells. T cell apoptosis was observed at relatively low concentrations of kynurenines, did not require Fas/Fas ligand interactions, and was associated with the activation of caspase-8 and the release of cytochrome c from mitochondria. When administered in vivo, the two kynurenines caused depletion of specific thymocyte subsets in a fashion qualitatively similar to dexamethasone. These data suggest that the selective deletion of T lymphocytes may be a major mechanism whereby tryptophan metabolism affects immunity under physiopathologic conditions.  (+info)

Prokaryotic homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7. (4/40)

The 2-nitrobenzoic acid degradation pathway of Pseudomonas fluorescens strain KU-7 proceeds via a novel 3-hydroxyanthranilate intermediate. In this study, we cloned and sequenced a 19-kb DNA locus of strain KU-7 that encompasses the 3-hydroxyanthranilate meta-cleavage pathway genes. The gene cluster, designated nbaEXHJIGFCDR, is organized tightly and in the same direction. The nbaC and nbaD gene products were found to be novel homologs of the eukaryotic 3-hydroxyanthranilate 3,4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase, respectively. The NbaC enzyme carries out the oxidation of 3-hydroxyanthranilate to 2-amino-3-carboxymuconate-6-semialdehyde, while the NbaD enzyme catalyzes the decarboxylation of the latter compound to 2-aminomuconate-6-semialdehyde. The NbaC and NbaD proteins were overexpressed in Escherichia coli and characterized. The substrate specificity of the 23.8-kDa NbaC protein was found to be restricted to 3-hydroxyanthranilate. In E. coli, this enzyme oxidizes 3-hydroxyanthranilate with a specific activity of 8 U/mg of protein. Site-directed mutagenesis experiments revealed the essential role of two conserved histidine residues (His52 and His96) in the NbaC sequence. The NbaC activity is also dependent on the presence of Fe(2+) but is inhibited by other metal ions, such as Zn(2+), Cu(2+), and Cd(2+). The NbaD protein was overproduced as a 38.7-kDa protein, and its specific activity towards 2-amino-3-carboxymuconate-6-semialdehyde was 195 U/mg of protein. Further processing of 2-aminomuconate-6-semialdehyde to pyruvic acid and acetyl coenzyme A was predicted to proceed via the activities of NbaE, NbaF, NbaG, NbaH, NbaI, and NbaJ. The predicted amino acid sequences of these proteins are highly homologous to those of the corresponding proteins involved in the metabolism of 2-aminophenol (e.g., AmnCDEFGH in Pseudomonas sp. strain AP-3). The NbaR-encoding gene is predicted to have a regulatory function of the LysR family type. The function of the product of the small open reading frame, NbaX, like the homologous sequences in the nitrobenzene or 2-aminophenol metabolic pathway, remains elusive.  (+info)

First evidence of catalytic mediation by phenolic compounds in the laccase-induced oxidation of lignin models. (5/40)

The sulfonephthalein indicator, phenol red, exhibits an unusually slow rate of oxidation by laccase from Poliporus pinsitus, in spite of the fact that it is a phenol and therefore a natural substrate for this phenoloxidase enzyme. Nevertheless, after prolonged exposure to laccase (24 h) phenol red is oxidized by more than 90%. We found that phenol red, which can be oxidatively converted into a resonance-stabilized phenoxy radical, performs as a mediator in the laccase-catalyzed oxidation of a nonphenolic substrate (4-methoxybenzyl alcohol) and also of a hindered phenol (2,4,6-tri-tert-butylphenol). In particular, phenol red was found to be at least 10 times more efficient than 3-hydroxyanthranilate (a reported natural phenolic mediator of laccase) in the oxidation of 4-methoxybenzyl alcohol. Other phenols, which do not bear structural analogies to phenol red, underwent rapid degradation and did not perform as laccase mediators. On the other hand, several variously substituted sulfonephthaleins, of different pK2 values, mediated the laccase catalysis, the most efficient being dichlorophenol red, which has the lowest pK2 of the series. The mediating efficiency of phenol red and dichlorophenol red was found to be pH dependent, as was their oxidation Ep value (determined by cyclic voltammetry). We argue that the relative abundance of the phenoxy anion, which is easier to oxidize than the protonated phenol, may be one of the factors determining the efficiency of a phenolic mediator, together with its ability to form relatively stable oxidized intermediates that react with the desired substrate before being depleted in undesired routes.  (+info)

Excretion of anthranilate and 3-hydroxyanthranilate by Saccharomyces cerevisiae: relationship to iron metabolism. (6/40)

Resting suspensions of cells of Saccharomyces cerevisiae grown in iron-rich or iron-deficient conditions were studied by following the fluorescence emission changes (lambda em. 400-460 nm, lambda exc. 300-340 nm) occurring in these suspensions upon addition of glucose and ferric iron. The results show that, in addition to NAD(P)H, metabolites of the aromatic amino acid pathway interfere with the fluorescence measurements, and that they could be involved in ferric iron reduction. Wild-type strains of S. cerevisiae are known to excreted anthranilic acid and 3-hydroxyanthranilic acid in response to glucose. The major fluorescing compound excreted by a chorismate-mutase-deficient mutant strain of S. cerevisiae was identified as anthranilic acid. The excretion of anthranilic and 3-hydroxyanthranilic acids was correlated with the ferric-reducing capacity of the extracellular medium. Excretion during growth was much greater by cells cultured in iron-rich medium than by cells grown in iron-deficient medium. The possibility was examined that a link could exist between the biosynthesis of aromatics and the ferri-reductase activity of the cells, via chorismate synthase and its putative diaphorase-associated activity. Two ferri-reductase-deficient mutants excreted much less 3-hydroxyanthranilate than did the parental wild-type strains. However, the ferri-reductase activity of a chorismate-synthase-deficient mutant was comparable to that of the parental strain.  (+info)

Inducible and constitutive kynureninases. Control of the inducible enzyme activity by transamination and inhibition of the constitutive enzyme by 3-hydroxyanthranilate. (7/40)

The inducible kynureninase from Neurospora crassa is inactivated by incubation with L-alanine or L-ornithine. The inactivated enzyme is resolved to the apoenzyme by dialysis. Reactivation of the apoenzyme is achieved by incubation with pyridoxamine 5'-phosphate plus pyruvate, as well as with pyridoxal 5'-phosphate. The kynurenine hydrolysis proceeds linearly in the presence of added pyridoxal 5'-phosphate, or pyridoxamine 5'-phosphate plus pyruvate. These findings indicate that the fungal inducible kynureninase can act as an amino-transferase to control the enzyme activity, and that the control mechanism is similar to that reported for the bacterial kynureninase (Moriguchi, M. & Soda, K. (1973) Biochemistry 12, 2974-2980). The ratio of kynureninase activity to aminotransferase activity was determined with bacterial and fungal enzymes. All the inducible kynureninases from various fungal species examined are also controlled by the transamination. In contrast, the pig liver kynureninase and the fungal constitutive enzymes are little or not at all affected by preincubation with amino acids. Thus, the present regulatory mechanism does not operate in these constitutive-type enzymes. The rate of hydrolysis of L-3-hydroxykynurenine by the pig liver enzyme decreases with increase in the incubation time; the enzyme is inhibited by 3-hydroxyanthranilate produced from L-3-hydroxykynurenine. The inhibition is found in all the constitutive-type enzymes, suggesting that 3-hydroxyanthranilate plays a regulatory role in NAD biosynthesis from tryptophan.  (+info)

Characterization of a pseudomonad 2-nitrobenzoate nitroreductase and its catabolic pathway-associated 2-hydroxylaminobenzoate mutase and a chemoreceptor involved in 2-nitrobenzoate chemotaxis. (8/40)

Pseudomonas fluorescens strain KU-7 is a prototype microorganism that metabolizes 2-nitrobenzoate (2-NBA) via the formation of 3-hydroxyanthranilate (3-HAA), a known antioxidant and reductant. The initial two steps leading to the sequential formation of 2-hydroxy/aminobenzoate and 3-HAA are catalyzed by a NADPH-dependent 2-NBA nitroreductase (NbaA) and 2-hydroxylaminobenzoate mutase (NbaB), respectively. The 216-amino-acid protein NbaA is 78% identical to a plasmid-encoded hypothetical conserved protein of Polaromonas strain JS666; structurally, it belongs to the homodimeric NADH:flavin mononucleotide (FMN) oxidoreductase-like fold family. Structural modeling of complexes with the flavin, coenzyme, and substrate suggested specific residues contributing to the NbaA catalytic activity, assuming a ping-pong reaction mechanism. Mutational analysis supports the roles of Asn40, Asp76, and Glu113, which are predicted to form the binding site for a divalent metal ion implicated in FMN binding, and a role in NADPH binding for the 10-residue insertion in the beta5-alpha2 loop. The 181-amino-acid sequence of NbaB is 35% identical to the 4-hydroxylaminobenzoate lyases (PnbBs) of various 4-nitrobenzoate-assimilating bacteria, e.g., Pseudomonas putida strain TW3. Coexpression of nbaB with nbaA in Escherichia coli produced a small amount of 3-HAA from 2-NBA, supporting the functionality of the nbaB gene. We also showed by gene knockout and chemotaxis assays that nbaY, a chemoreceptor NahY homolog located downstream of the nbaA gene, is responsible for strain KU-7 being attracted to 2-NBA. NbaY is the first chemoreceptor in nitroaromatic metabolism to be identified, and this study completes the gene elucidation of 2-NBA metabolism that is localized within a 24-kb chromosomal locus of strain KU-7.  (+info)