The mechanism of inhibition of beta-oxidation by aspirin metabolites in skin fibroblasts from Reye's syndrome patients and controls. (9/341)

The effects of aspirin metabolites on beta-oxidation were studied in skin fibroblasts from eight typical Reye's syndrome (RS) patients and controls. RS patients' cells did not differ from controls in rates of palmitate oxidation or in the three component activities of the mitochondrial trifunctional enzyme (MTE), indicating no inherited beta-oxidation defect. Aspirin metabolites salicylate, hydroxyhippurate and gentisate, but not aspirin, directly inhibited palmitate oxidation in control and RS cells. RS cells were significantly more sensitive to inhibition than controls at 0.5 to 5 mM salicylate. Inhibition was concentration-dependent and reversible. Inhibition did not occur in fibroblasts lacking activity of the long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) activity of MTE. Salicylate was therefore inhibiting beta-oxidation at this step. Hydroxyhippurate and salicylate reversibly inhibited HAD activities in extracts of control and RS cells. Studies with pure short-chain HAD and LCHAD (MTE) showed hydroxyhippurate and salicylate were competitive inhibitors of the former but mixed (not competitive) inhibitors of the latter. Both compounds inhibited the combined, three-step, MTE reaction measured in the physiological direction. We conclude that (1) salicylate and hydroxyhippurate decrease beta-oxidation in intact cells by reversible inhibition of LCHAD activity of the MTE, and (2) beta-oxidation in RS cells is inherently more sensitive to inhibition by low concentrations of salicylate than controls.  (+info)

Binding of amyloid beta-peptide to mitochondrial hydroxyacyl-CoA dehydrogenase (ERAB): regulation of an SDR enzyme activity with implications for apoptosis in Alzheimer's disease. (10/341)

The intracellular amyloid beta-peptide (A beta) binding protein, ERAB, a member of the short-chain dehydrogenase/reductase (SDR) family, is known to mediate apoptosis in different cell lines and to be a class II hydroxyacyl-CoA dehydrogenase. The A beta peptide inhibits the enzymatic reaction in a mixed type fashion with a Ki of 1.2 micromol/l and a KiES of 0.3 micromol/l, using 3-hydroxybutyryl-CoA. The peptide region necessary for inhibition comprises residues 12-24 of A beta1-40, covering the 16-20 fragment, which is the minimum sequence for the blockade of A beta polymerization, but that minimal fragment is not sufficient for more than marginal inhibition. The localization of ERAB to the endoplasmic reticulum and mitochondria suggests a complex interaction with components of the programmed cell death machinery. The interaction of A beta with ERAB further links oxidoreductase activity with both apoptosis and amyloid toxicity.  (+info)

Enoyl-CoA hydratase deficiency: identification of a new type of D-bifunctional protein deficiency. (11/341)

D-bifunctional protein is involved in the peroxisomal beta-oxidation of very long chain fatty acids, branched chain fatty acids and bile acid intermediates. In line with the central role of D-bifunctional protein in the beta-oxidation of these three types of fatty acids, all patients with D-bifunctional protein deficiency so far reported in the literature show elevated levels of very long chain fatty acids, branched chain fatty acids and bile acid inter-mediates. In contrast, we now report two novel patients with D-bifunctional protein deficiency who both have normal levels of bile acid intermediates. Complementation analysis and D-bifunctional protein activity measurements revealed that both patients had an isolated defect in the enoyl-CoA hydratase domain of D-bifunctional protein. Subsequent mutation analysis showed that both patients are homozygous for a missense mutation (N457Y), which is located in the enoyl-CoA hydratase coding part of the D-bifunctional protein gene. Expression of the mutant protein in the yeast Saccharomyces cerevisiae confirmed that the N457Y mutation is the disease-causing mutation. Immunoblot analysis of patient fibroblast homogenates showed that the protein levels of full-length D-bifunctional protein were strongly reduced while the enoyl-CoA hydratase component produced after processing within the peroxisome was undetectable, which indicates that the mutation leads to an unstable protein.  (+info)

Orphan nuclear hormone receptor RevErbalpha modulates expression from the promoter of the hydratase-dehydrogenase gene by inhibiting peroxisome proliferator-activated receptor alpha-dependent transactivation. (12/341)

Peroxisome proliferator-activated receptor alpha (PPARalpha) heterodimerizes with the 9-cis-retinoic acid receptor (RXRalpha) to bind to peroxisome proliferator-response elements (PPRE) present in the upstream regions of a number of genes involved in metabolic homeostasis. Among these genes are those encoding fatty acyl-CoA oxidase (AOx) and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase (HD), the first two enzymes of the peroxisomal beta-oxidation pathway. Here we demonstrate that the orphan nuclear hormone receptor, RevErbalpha, modulates PPARalpha/RXRalpha- dependent transactivation in a response element-specific manner. In vitro binding analysis showed that RevErbalpha bound the HD-PPRE but not the AOx-PPRE. Determinants within the HD-PPRE required for RevErbalpha binding were distinct from those required for PPARalpha/RXRalpha binding. In transient transfections, RevErbalpha antagonized transactivation by PPARalpha/RXRalpha from an HD-PPRE luciferase reporter construct, whereas no effects were observed with an AOx-PPRE reporter construct. These data identify the HD gene as a target for RevErbalpha and illustrate cross-talk between the RevErbalpha and PPARalpha signaling pathways on the HD-PPRE. Our results suggest a novel role for RevErbalpha in regulating peroxisomal beta-oxidation.  (+info)

Yeast peroxisomal multifunctional enzyme: (3R)-hydroxyacyl-CoA dehydrogenase domains A and B are required for optimal growth on oleic acid. (13/341)

The yeast peroxisomal (3R)-hydroxyacyl-CoA dehydrogenase/2-enoyl-CoA hydratase 2 (multifunctional enzyme type 2; MFE-2) has two N-terminal domains belonging to the short chain alcohol dehydrogenase/reductase superfamily. To investigate the physiological roles of these domains, here called A and B, Saccharomyces cerevisiae fox-2 cells (devoid of Sc MFE-2) were taken as a model system. Gly(16) and Gly(329) of the S. cerevisiae A and B domains, corresponding to Gly(16), which is mutated in the human MFE-2 deficiency, were mutated to serine and cloned into the yeast expression plasmid pYE352. In oleic acid medium, fox-2 cells transformed with pYE352:: ScMFE-2(aDelta) and pYE352::ScMFE-2(bDelta) grew slower than cells transformed with pYE352::ScMFE-2, whereas cells transformed with pYE352::ScMFE-2(aDeltabDelta) failed to grow. Candida tropicalis MFE-2 with a deleted hydratase 2 domain (Ct MFE- 2(h2Delta)) and mutational variants of the A and B domains (Ct MFE- 2(h2DeltaaDelta), Ct MFE- 2(h2DeltabDelta), and Ct MFE- 2(h2DeltaaDeltabDelta)) were overexpressed and characterized. All proteins were dimers with similar secondary structure elements. Both wild type domains were enzymatically active, with the B domain showing the highest activity with short chain and the A domain with medium and long chain (3R)-hydroxyacyl-CoA substrates. The data show that the dehydrogenase domains of yeast MFE-2 have different substrate specificities required to allow the yeast to propagate optimally on fatty acids as the carbon source.  (+info)

Pig heart short chain L-3-hydroxyacyl-CoA dehydrogenase revisited: sequence analysis and crystal structure determination. (14/341)

Short chain L-3-hydroxyacyl CoA dehydrogenase (SCHAD) is a soluble dimeric enzyme critical for oxidative metabolism of fatty acids. Its primary sequence has been reported to be conserved across numerous tissues and species with the notable exception of the pig heart homologue. Preliminary efforts to solve the crystal structure of the dimeric pig heart SCHAD suggested the unprecedented occurrence of three enzyme subunits within the asymmetric unit, a phenomenon that was thought to have hampered refinement of the initial chain tracing. The recently solved crystal coordinates of human heart SCHAD facilitated a molecular replacement solution to the pig heart SCHAD data. Refinement of the model, in conjunction with the nucleotide sequence for pig heart SCHAD determined in this paper, has demonstrated that the previously published pig heart SCHAD sequence was incorrect. Presented here are the corrected amino acid sequence and the high resolution crystal structure determined for pig heart SCHAD complexed with its NAD+ cofactor (2.8 A; R(cryst) = 22.4%, R(free) = 28.8%). In addition, the peculiar phenomenon of a dimeric enzyme crystallizing with three subunits contained in the asymmetric unit is described.  (+info)

Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children. (15/341)

BACKGROUND: The clinical manifestations of inherited disorders of fatty acid oxidation vary according to the enzymatic defect. They may present as isolated cardiomyopathy, sudden death, progressive skeletal myopathy, or hepatic failure. Arrhythmia is an unusual presenting symptom of fatty acid oxidation deficiencies. METHODS AND RESULTS: Over a period of 25 years, 107 patients were diagnosed with an inherited fatty acid oxidation disorder. Arrhythmia was the predominant presenting symptom in 24 cases. These 24 cases included 15 ventricular tachycardias, 4 atrial tachycardias, 4 sinus node dysfunctions with episodes of atrial tachycardia, 6 atrioventricular blocks, and 4 left bundle-branch blocks in newborn infants. Conduction disorders and atrial tachycardias were observed in patients with defects of long-chain fatty acid transport across the inner mitochondrial membrane (carnitine palmitoyl transferase type II deficiency and carnitine acylcarnitine translocase deficiency) and in patients with trifunctional protein deficiency. Ventricular tachycardias were observed in patients with any type of fatty acid oxidation deficiency. Arrhythmias were absent in patients with primary carnitine carrier, carnitine palmitoyl transferase I, and medium chain acyl coenzyme A dehydrogenase deficiencies. CONCLUSIONS: The accumulation of arrhythmogenic intermediary metabolites of fatty acids, such as long-chain acylcarnitines, may be responsible for arrhythmias. Inborn errors of fatty acid oxidation should be considered in unexplained sudden death or near-miss in infants and in infants with conduction defects or ventricular tachycardia. Diagnosis can be easily ascertained by an acylcarnitine profile from blood spots on filter paper.  (+info)

Intrinsic alcohol dehydrogenase and hydroxysteroid dehydrogenase activities of human mitochondrial short-chain L-3-hydroxyacyl-CoA dehydrogenase. (16/341)

The alcohol dehydrogenase (ADH) activity of human short-chain l-3-hydroxyacyl-CoA dehydrogenase (SCHAD) has been characterized kinetically. The k(cat) of the purified enzyme was estimated to be 2. 2 min(-1), with apparent K(m) values of 280 mM and 22microM for 2-propanol and NAD(+), respectively. The k(cat) of the ADH activity was three orders of magnitude less than the l-3-hydroxyacyl-CoA dehydrogenase activity but was comparable with that of the enzyme's hydroxysteroid dehydrogenase (HSD) activity for oxidizing 17beta-oestradiol [He, Merz, Mehta, Schulz and Yang (1999) J. Biol. Chem. 274, 15014-15019]. However, the k(cat) values of intrinsic ADH and HSD activities of human SCHAD were found to be two orders of magnitude less than those reported for endoplasmic-reticulum-associated amyloid beta-peptide-binding protein (ERAB) [Yan, Shi, Zhu, Fu, Zhu, Zhu, Gibson, Stern, Collison, Al-Mohanna et al. (1999) J. Biol. Chem. 274, 2145-2156]. Since human SCHAD and ERAB apparently possess identical amino acid sequences, their catalytic properties should be identical. The recombinant SCHAD has been confirmed to be the right gene product and not a mutant variant. Steady-state kinetic measurements and quantitative analyses reveal that assay conditions such as pH and concentrations of coenzyme and substrate do not account for the kinetic differences reported for ERAB and SCHAD. Rather problematic experimental procedures appear to be responsible for the unrealistically high catalytic rate constants of ERAB. Eliminating the confusion surrounding the catalytic properties of this important multifunctional enzyme paves the way for exploring its role(s) in the pathogenesis of Alzheimer's disease.  (+info)