Progesterone stimulates pancreatic cell proliferation in vivo. (1/82)

Treatment of cyclic and pregnant rats with progesterone stimulates cell proliferation within the islets of Langerhans. It was investigated whether this effect of progesterone depends on sex and/or the presence of the gonads or the presence of oestradiol. For this purpose, Silastic tubes containing progesterone were inserted s.c. in intact and gonadectomized male and female rats, and in gonadectomized female rats treated with oestradiol. After 6 days of progesterone treatment, rats were infused for 24 h with 5-bromo-2'-deoxyuridine (BrdU) and dividing cells were identified in pancreatic sections by immunostaining for BrdU. Progesterone treatment increased islet-cell proliferation in intact male and female rats (P < 0.05), but not in gonadectomized male and female rats or in gonadectomized female rats supplemented with oestradiol. Furthermore, in intact male and female rats, progesterone treatment also stimulated cell proliferation in extra-islet pancreatic tissue (P < 0.05). Identification of the proliferating cells, by double-immunocytochemistry, revealed that progesterone treatment stimulated proliferation of both alpha and beta cells within the pancreatic islets. In extra-islet pancreatic tissue, progesterone treatment stimulated proliferation in both duct (cytokeratin 20-immunoreactive) and non-duct cells. Progesterone treatment did not increase the number of single glucagon or insulin-containing cells outside the pancreatic islets, nor that of cytokeratin 20/insulin double-positive cells, suggesting that progesterone treatment did not stimulate differentiation of duct cells into endocrine cells. Progesterone treatment did not affect insulin responses to an i.v. glucose load (0.5 g/kg body weight). It is concluded that progesterone stimulates pancreatic cell proliferation indirectly; gonadal factor(s), not identical to oestradiol, is (are) probably involved.  (+info)

The proestrous prolactin surge is not the sole initiator of regressive changes in corpora lutea of normally cycling rats. (2/82)

During the estrous cycle, secretion of prolactin is largely restricted to a surge on proestrus. We investigated whether this proestrous prolactin surge initiates regression of the corpora lutea of the preceding cycle. Adult rats were killed prior to the prolactin surge (Proestrus group), following the prolactin surge (Estrus group), after chemical blockade of the prolactin surge with bromocryptine (Estrus+BRC group), and after blockade of the prolactin surge and administration of prolactin (Estrus+BRC+PRL group). Corpora lutea of the current (proestrus) or preceding (estrus) cycle were dissected out, weighed, and sectioned for immunohistochemistry or cultured for examination of in vitro progestin production. Numbers of luteal monocytes/macrophages, differentiated macrophages, and apoptotic nuclei per high-power field were greater for Estrus and Estrus+BRC+PRL than for Estrus+BRC, which in turn had greater numbers than Proestrus (P< 0.05). In contrast, BRC completely reversed the decline in luteal weight observed between Proestrus and Estrus (P<0.05). Number of major histocompatibility complex II-positive cells was not different between groups (P>0.05). Finally, progestin production by corpora lutea in vitro was lower for Proestrus than for the other groups (P<0.05). The results indicate that the prolactin surge alone is not responsible for initiation of apoptosis or immune cell infiltration in regressing corpora lutea of the estrous cycle, although prolactin increases these markers of regression. Prolactin does cause a decline in luteal weight; however, the corpora lutea retain the capacity for steroidogenesis. We conclude that although prolactin has a role in luteal regression, it is not solely responsible for the initiation of this process.  (+info)

Biphasic change in correlation between ovarian lipid peroxides and progestational activity during pseudopregnancy induced in immature rats. (3/82)

We measured ovarian lipid peroxide (LP) levels and plasma progestins, progesterone (P4) and 20alpha-dihydroprogesterone, throughout pseudopregnancy in gonadotropin-primed immature rats. Plasma P4 fluctuated, with two peaks on days 5 (PSP5) and 8 of pseudopregnancy, and then declined to the basal level by PSP12. Ovarian LP increased from PSP1 to PSP4, decreased temporarily until PSP8, and then rose gradually until PSP14. From PSP1 through PSP7, ovarian LP was positively correlated with total progestins according to the Spearman ranked correlation coefficient (r=+0.829, p<0.05). In contrast, a negative correlation between ovarian LP and plasma P4 was apparent (r=-0.816, p<0.05) from PSP8 to PSP14. These results show the biphasic correlation of LP with luteal progestational activity depending on the luteal stage.  (+info)

Downregulation of long-form prolactin receptor mRNA during prolactin-induced luteal regression. (4/82)

OBJECTIVE: Prolactin is capable of both trophic and lytic actions in rat corpora lutea. In corpora lutea responding to a trophic prolactin signal, the long form of the prolactin receptor is the dominant form and is upregulated by prolactin. We investigated whether mRNA for the short form of the prolactin receptor was dominant in corpora lutea responding to a lytic prolactin signal, and whether the relative concentrations of the mRNAs for both forms of the prolactin receptor were changed during this response. DESIGN AND METHODS: Immature rats were ovulated by injection of 5 IU equine chorionic gonadotrophin and 5 IU human chorionic gonadotrophin, and were hypophysectomized shortly after ovulation. Nine days after hypophysectomy, rats were injected with prolactin (500 microg/day) or vehicle for 24 (n=6, n=6) or 72 h (n=13, n=5). Total RNA was isolated from corpora lutea and mRNA for both types of prolactin receptor were analyzed by semiquantitative RT-PCR using the ribosomal protein S16 as the internal control. RESULTS: The intensities of the long- and short-form prolactin receptor signals were normalized to the S16 internal control and expressed as relative densitometric units. The normalized values at 24h for prolactin-treated vs vehicle-treated rats were 0.23 +/- 0.05 vs 0.49 +/- 0.15 (P>0.05) for the short form and 4.04 +/- 0.8 vs 4.23 +/- 0. 6 (P>0.05) for the long form. The values for 72 h were 0.30 +/- 0.05 vs 0.24 +/- 0.05 (P>0.05) for the short form and 2.76 +/- 0.4 vs 5. 53 +/- 0.3 (P<0.01) for the long form respectively. CONCLUSION: The long form of the prolactin receptor is the dominant form at both time-points; however, the concentration of mRNA for this receptor isoform was specifically downregulated by prolactin treatment. Our results suggest that the short form of the prolactin receptor alone is unlikely to mediate the luteolytic action of prolactin, but that luteolytic events may be influenced via a change in the ratio of the two receptor isoforms.  (+info)

Repeated exposure to prolactin is required to induce luteal regression in the hypophysectomized rat. (5/82)

We investigated whether prolactin (PRL) treatments resembling the intermittent PRL surges of estrous cycles could induce luteal regression in hypophysectomized rats. Immature female rats were stimulated to ovulate and form corpora lutea with exogenous gonadotropins, and were hypophysectomized following ovulation. A single s.c. injection of either vehicle (VEH) or PRL was administered to each rat on post-hypophysectomy Day 8 and again on Day 11. The four resulting treatment groups consisted of rats that received two injections of VEH, VEH followed by PRL, PRL followed by VEH, or two injections of PRL. Rats were killed 24 or 72 h following the second injection. Plasma 20alpha-dihydroprogesterone, luteal weight, and total luteal protein were determined. One ovary was sectioned for immunohistochemistry for monocytes/macrophages, apoptotic nuclei, and major histocompatibility class II (MHC II) molecules. No effect of time (following injection) was observed on any endpoint, indicating that PRL does not have an ongoing regressive action. Time groups from within each treatment group were therefore pooled for analysis. Significant declines (P: < 0.05) in plasma concentrations of 20alpha-dihydroprogesterone, luteal weight, and protein per corpus luteum occurred only after two injections of PRL. Numbers of luteal monocytes/macrophages, apoptotic nuclei, and MHC II-positive cells were low in all groups; numbers of luteal monocytes/macrophages increased following two injections of PRL (P: < 0.05). We conclude that PRL has a cumulative regressive effect on the corpus luteum of the hypophysectomized rat. Drawing a parallel with the estrous cycle, we suggest that continued exposure to PRL, over several cycles, is necessary to induce full luteal regression.  (+info)

Dependence on prolactin of the luteolytic effect of prostaglandin F2alpha in rat luteal cell cultures. (6/82)

Luteal regression is a multistep, prolonged process, and long-term luteal cultures are required for studying it in vitro. Cell suspensions from ovaries of superovulated rats were enriched with steroidogenic cells, seeded on laminin or fibronectin, and maintained in defined medium for up to 10 days. Progesterone secretion was much lower than that of 20alpha-dihydroprogesterone, a product of 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD). Prolactin added throughout the incubation period gradually increased the percent progesterone out of total progestins to fourfold, while reducing 20alpha-HSD mRNA by 73%. Luteinizing hormone accelerated the establishment of higher percent progesterone by prolactin but by itself had no effect. Prolactin did not increase total progestin production or cytochrome P450 side-chain cleavage (P450(scc)) mRNA. Cell viability was unaffected by prolactin and/or LH. Prostaglandin F2alpha (PGF2alpha) was added 7-8 days after seeding. In prolactin-treated cells, PGF2alpha reduced steroidogenesis after 4-45 h, and at 45 h total progestins and P450(scc) mRNA were reduced by 45%. At 8-45 h PGF2alpha reduced the percent progesterone out of total progestins, and at 45 h 20alpha-HSD mRNA was doubled. In contrast, in prolactin-deprived cultures, PGF2alpha had little effect on total progestins or 20alpha-HSD mRNA but doubled P450(scc) mRNA. Phospholipase C activity was stimulated by PGF2alpha regardless of prolactin. Thus, when prolactin-treated, our cultures are a good model for mature corpora lutea challenged with PGF2alpha; the finding that without prolactin PGF2alpha has an alternative set of actions could help in identifying the signaling pathways of PGF2alpha responsible for its luteolytic effects.  (+info)

Increase in circulating levels of cardiac natriuretic peptides after hormone replacement therapy in postmenopausal women. (7/82)

The mechanisms that mediate the cardioprotective action of steroid hormones in postmenopausal women are poorly understood. To study the inter-relationship between female steroid hormones and cardiac natriuretic peptides, plasma levels of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) were measured in postmenopausal women, both before and after oestrogen replacement therapy. A total of 22 healthy postmenopausal women (mean age 51.9+/-4.6 years) were enrolled in the study; all had been postmenopausal for at least 1 year and all reported climacteric symptoms accompanied by increased levels of follicle-stimulating hormone (>30 m-i.u./ml) and luteinizing hormone (>20 m-i.u./ml), and a reduction in oestradiol (<25 pg/ml). All women were given hormone replacement therapy with transdermal oestradiol, either patch (50 microg/24 h) or gel (1 mg/day), cyclically combined with oral dihydrogesterone (10 mg/day for 12 days/month, on days 19-30 of the month). ANP and BNP were measured directly in plasma samples with specific and sensitive immunoradiometric assays before and after hormone replacement therapy (transdermal oestradiol combined with oral dihydrogesterone). Body weight, arterial blood pressure and echocardiographic examination values did not change after hormone replacement therapy. As expected, serum oestradiol increased significantly and gonadotropins decreased as an effect of the hormone replacement therapy. On average, both ANP and BNP had increased significantly after 3 months of hormone replacement therapy [ANP: before treatment, 17.6+/-9.6 pg/ml; after, 23.6+/-5.6 pg/ml (P=0.0173); BNP: before treatment, 12.6+/-10.2 pg/ml; after, 19.8+/-14.0 pg/ml (P<0.0001)]. Our study indicates that hormone replacement therapy for a period of 3 months induces a rise in the circulating levels of cardiac natriuretic hormones in postmenopausal women. Our data also suggest the working hypothesis that cardiac natriuretic peptides may play an important role in mediating the cardioprotective effects of female steroid sex hormones in women throughout life.  (+info)

Afferent baroreceptor discharge in pregnant rats. (8/82)

The baroreflex function curve is shifted to lower operating pressures, efferent sympathoexcitatory responses are attenuated, and sympathoinhibitory responses are potentiated in pregnant compared with virgin rats. It has been proposed that during pregnancy, elevated levels of 3 alpha-hydroxy-dihydroprogesterone (3 alpha-OH-DHP), a major metabolite of progesterone, may contribute to this difference, because acute intravenous administration of 3 alpha-OH-DHP to virgin female rats mimics the effects of pregnancy on the baroreflex. To determine whether changes in the afferent limb might contribute to these baroreflex responses, the effects of pregnancy and 3 alpha-OH-DHP on aortic depressor nerve activity were assessed in the current study. Baroreceptor discharge curves were obtained in Inactin-anesthetized rats by recording aortic nerve activity during ramp increases and decreases in mean arterial pressure (MAP) [intravenous phenylephrine and nitroprusside infusion] before [(control, C) 15 min (E1), and 30 min (E2) after 3 alpha-OH-DHP (220 microg/kg bolus + 22 microg x kg(-1) x min(-1) infusion iv)]. Baseline blood pressure was significantly lower in pregnant (109 +/- 4.4 mmHg) compared with virgin (122 +/- 2.8 mmHg) rats. The only significant difference in the baroreceptor discharge curves was a decrease in curve midpoint in pregnant rats (virgin = 140 +/- 2.7 vs. pregnant = 124 +/- 3.6 mmHg). 3 alpha-OH-DHP had no effect on afferent baroreceptor discharge curves in either virgin or pregnant groups. These results suggest that pressure-dependent baroreceptor resetting may contribute to a shift in the baroreflex curve to lower operating pressures, but cannot completely explain differences in baroreflex function between virgin and pregnant animals.  (+info)