Properties of palmitoyl phosphatidylcholine, sphingomyelin, and dihydrosphingomyelin bilayer membranes as reported by different fluorescent reporter molecules. (33/241)

The properties of vesicle membranes prepared from 16:0-SM, 16:0-DHSM, or DPPC were characterized using steady-state and time-resolved fluorescence spectroscopy and different fluorescent reporter molecules. The acyl-chain region was probed using free and phospholipid-bound 1,6-diphenyl-1,3,5-hexatriene. 16:0-DHSM was found to be the more ordered than both DPPC and 16:0-SM 5 degrees C below and above melting temperature. Interfacial properties of the phospholipid bilayers were examined using 6-dodecanoyl-2-dimethyl-aminonaphthalene (Laurdan), 6-propionyl-2-dimethyl-amino-naphthalene (Prodan), and dansyl-PE. Laurdan and Prodan reported that the two sphingomyelin (SM) membrane interfaces were clearly different from the DPPC membrane interface, whereas the two SM membrane interfaces had more similar properties (both in gel and liquid-crystalline phase). Prodan partition studies showed that membrane resistance to Prodan partitioning increased in the order: 16:0-SM < DPPC < 16:0-DHSM. The degree to which dansyl-PE is exposed to water reflects the structural properties of the membrane-water interface. By comparing the lifetime of dansyl-PE in water and deuterium oxide solution, we could show that the degree to which the dansyl moiety was exposed to water in the membranes increased in the order: 16:0-SM < DPPC < 16:0-DHSM. In conclusion, this study has shown that DHSM forms more ordered bilayers than acyl-chain matched SM or phosphatidylcholine, even in the liquid-crystalline state.  (+info)

Trehalose influence on beta-lactoglobulin stability and hydration by time resolved fluorescence. (34/241)

The stabilizing role of the disaccharide trehalose on beta-lactoglobulin (BLG) against its chemical denaturation both at native and acidic pH has been explored by means of time-resolved fluorescence of the probe acrylodan covalently bound to the unique free cysteine of BLG. The changes in acrylodan fluorescence lifetime with guanidinium chloride concentration reveal BLG sigmoidal denaturation profiles which depend upon the amount of trehalose in solution. When adding trehalose the transition midpoint shifts towards higher denaturant concentration. This effect has been measured by fitting the data with a two-state model whose parameters indicate that an almost 60% increase in the denaturation free energy is induced independently of trehalose concentrations and pH values. Fluorescence anisotropy measurements performed in the same conditions reveal that the internal dynamics are largely affected by the sugar, which makes the acrylodan environment more rigid, and by the denaturant that acts in the opposite way. The overall rotational diffusion of BLG suggests that trehalose affects the hydrodynamic properties of the solution in the proximity of the protein; tentative mechanisms are discussed.  (+info)

The association of alpha-synuclein with membranes affects bilayer structure, stability, and fibril formation. (35/241)

The aggregation of alpha-synuclein is believed to be a critical factor in the etiology of Parkinson's disease. alpha-Synuclein is an abundant neuronal protein of unknown function, which is enriched in the presynaptic terminals of neurons. Although alpha-synuclein is found predominantly in the cytosolic fractions, membrane-bound alpha-synuclein has been suggested to play an important role in fibril formation. The effects of alpha-synuclein on lipid bilayers of different compositions were determined using fluorescent environment-specific probes located at various depths. alpha-Synuclein-membrane interactions were found to affect both protein and membrane properties. Our results indicate that in addition to electrostatic interactions, hydrophobic interactions are important in the association of the protein with the bilayer, and lead to disruption of the membrane. The latter was observed by atomic force microscopy and fluorescent dye leakage from vesicles. The kinetics of alpha-synuclein fibril formation were significantly affected by the protein association and subsequent membrane disruption, and reflected the conformation of alpha-synuclein. The ability of alpha-synuclein to disrupt membranes correlated with the binding affinity of alpha-synuclein for the particular membrane composition, and to the induced helical conformation of alpha-synuclein. Protofibrillar or fibrillar alpha-synuclein caused a much more rapid destruction of the membrane than soluble monomeric alpha-synuclein, indicating that protofibrils (oligomers) or fibrils are likely to be significantly neurotoxic.  (+info)

Quantitation of liquid-crystalline ordering in F-actin solutions. (36/241)

Actin filaments (F-actin) are important determinants of cellular shape and motility. These functions depend on the collective organization of numerous filaments with respect to both position and orientation in the cytoplasm. Much of the orientational organization arises spontaneously through liquid crystal formation in concentrated F-actin solutions. In studying this phenomenon, we found that solutions of purified F-actin undergo a continuous phase transition, from the isotropic state to a liquid crystalline state, when either the mean filament length or the actin concentration is increased above its respective threshold value. The phase diagram representing the threshold filament lengths and concentrations at which the phase transition occurs is consistent with that predicted by Flory's theory on solutions of noninteracting, rigid cylinders (Flory, 1956b). However, in contrast to other predictions based on this model, we found no evidence for the coexistence of isotropic and anisotropic phases. Furthermore, the phase transition proved to be temperature dependent, which suggests the existence of orientation-dependent interfilament interactions or of a temperature-dependent filament flexibility. We developed a simple method for growing undistorted fluorescent acrylodan-labeled F-actin liquid crystals; and we derived a simple theoretical treatment by which polarization-of-fluorescence measurements could be used to quantitate, for the first time, the degree of spontaneous filament ordering (nematic order parameter) in these F-actin liquid crystals. This order parameter was found to increase monotonically with both filament length and concentration. Actin liquid crystals can readily become distorted by a process known as "texturing." Zigzaging and helicoidal liquid crystalline textures which persisted in the absence of ATP were observed through the polarizing microscope. Possible texturing mechanisms are discussed.  (+info)

Suramin and suramin analogues inhibit merozoite surface protein-1 secondary processing and erythrocyte invasion by the malaria parasite Plasmodium falciparum. (37/241)

Malarial merozoites invade erythrocytes; and as an essential step in this invasion process, the 42-kDa fragment of Plasmodium falciparum merozoite surface protein-1 (MSP142) is further cleaved to a 33-kDa N-terminal polypeptide (MSP133) and an 19-kDa C-terminal fragment (MSP119) in a secondary processing step. Suramin was shown to inhibit both merozoite invasion and MSP142 proteolytic cleavage. This polysulfonated naphthylurea bound directly to recombinant P. falciparum MSP142 (Kd = 0.2 microM) and to Plasmodium vivax MSP142 (Kd = 0.3 microM) as measured by fluorescence enhancement in the presence of the protein and by isothermal titration calorimetry. Suramin bound only slightly less tightly to the P. vivax MSP133 (Kd = 1.5 microM) secondary processing product (fluorescence measurements), but very weakly to MSP119 (Kd approximately 15 mM) (NMR measurements). Several residues in MSP119 were implicated in the interaction with suramin using NMR measurements. A series of symmetrical suramin analogues that differ in the number of aromatic rings and substitution patterns of the terminal naphthylamine groups was examined in invasion and processing assays. Two classes of analogue with either two or four bridging rings were found to be active in both assays, whereas two other classes without bridging rings were inactive. We propose that suramin and related compounds inhibit erythrocyte invasion by binding to MSP1 and by preventing its cleavage by the secondary processing protease. The results indicate that enzymatic events during invasion are suitable targets for drug development and validate the novel concept of an inhibitor binding to a macromolecular substrate to prevent its proteolysis by a protease.  (+info)

A fluorescently labeled intestinal fatty acid binding protein. Interactions with fatty acids and its use in monitoring free fatty acids. (38/241)

The fatty acid-binding protein from rat intestine (I-FABP) has been covalently modified with the fluorescent compound Acrylodan. Acrylodan was found to label Lys27, one of the few amino acid residues found by x-ray diffraction studies to change orientation upon fatty acid (FA) binding to I-FABP. Binding of FA to this Acrylodan-modified I-FABP (ADIFAB) induces a large shift in fluorescence emission wavelength from 432 to 505 nm. As a consequence, the ratio of emission intensities provides a direct measure of the concentration of FA bound to the protein. Binding of FA is well described by single site equilibrium for FA concentrations below the critical micelle concentration. ADIFAB dissociation constants (Kd) determined at 37 degrees C and at concentrations below the critical micelle concentration for oleate, palmitate, linoleate, arachidonate, and linolenate were, respectively, 0.28, 0.33, 0.97, 1.6, and 2.5 microM. The variation of these Kd values with FA molecular species is highly correlated with the solubility of the FA in water, suggesting that all these FA bind with a similar conformation in the I-FABP binding site. The ADIFAB response together with the measured equilibrium constants allows a direct determination of the concentration of long chain free fatty acid (FFA) in the concentration range, depending upon the FA molecular species, between 1 nM and > 20 microM. As an example of its use as a probe to measure FFA levels, ADIFAB is used here to monitor the time course for FFA release from IgE receptor- and ionomycin-activated rat basophilic leukemia (RBL) cells.  (+info)

Biomolecular mimicry in the actin cytoskeleton: mechanisms underlying the cytotoxicity of kabiramide C and related macrolides. (39/241)

This study characterizes the interactions between kabiramide C (KabC) and related macrolides and actin and establishes the mechanisms that underlie their inhibition of actin filament dynamics and cytotoxicity. The G-actin-KabC complex is formed through a two-step binding reaction and is extremely stable and long-lived. Competition-binding studies show that KabC binds to the same site on G-actin as Gelsolin domain 1 and CapG. KabC also binds to protomers within F-actin and results in the severing and capping of the (+) end; these studies suggest that free KabC and related macrolides act as biomimetics of Gelsolin. The G-actin-KabC complex binds to the (+) end of a growing filament, where it functions as a novel, unregulated, (+)-end capper and is largely responsible for the inhibition of motility and cytokinesis in approximately 10 -100 nM KabC-treated cells. KabC and related macrolides are useful probes to study the regulation of the actin filament (+) end and may lead to new therapies to treat diseases of the actin cytoskeleton.  (+info)

Fluorescence properties of Laurdan in cochleate phases. (40/241)

Cochleates are lipid-based delivery system that have found application in drug and gene delivery. They are precipitates, formed as a result of interaction between cations (e.g. Ca2+) and negatively charged phospholipids such as phosphatidylserine (PS). In the present study, we investigated the utility of fluorescent probe Laurdan (6-dodecanoyl-2-dimethylamino naphthalene) to monitor cochleate phase formation. Following addition of Ca2+ to Laurdan labeled lipid vesicles comprised of brain phosphatidylserine (BPS), a significant blue shift in the emission peak maximum of Laurdan was observed and the spectral features were distinct from those observed for the gel and liquid-crystalline (LC) phases. This is consistent with the formation of anhydrous cochleate cylinders that was further confirmed by electron microscopy studies. Due to dipolar relaxation, excitation and emission generalized polarization (GPEx and GPEm) indicate transition from a LC to a rigid and dehydrated (RD) cochleate phase. These spectral changes were utilized to monitor the influence of lipid composition, ionic strength and lamellarity on the formation of cochleate phase. The results indicated that the presence of phosphatidylcholine (PC) and bulk Na+ concentration influenced the formation of cochleate structures from small unilamellar vesicles (SUV) and multilamellar vesicles (MLV) composed of PS. The presence of PC and higher bulk Na+ concentration stabilized the PS vesicles against collapse and total loss of contents, intermediate molecular events in the formation of cochleate structures. From these studies, we conclude that Laurdan fluorescence is a sensitive and a rapid method to detect cochleate phase formation.  (+info)