Influence of adenosine receptor blockade on renal function and renal autoregulation. (73/208)

Experiments were conducted in anesthetized dogs to evaluate the effects of adenosine receptor blockade on renal function and on autoregulation of total RBF and outer cortical blood flow. After control measurements, the adenosine receptor antagonist, 1,3-dipropyl-8-p-sulfophenylxanthine (PSPX) was infused intrarenally for 45 min at 2 or 6 microM/min. Responses to PSPX were compared with those obtained during infusions of either aminophylline or theophylline. PSPX infusion led to substantial increases in urine flow and sodium excretion (four- to fivefold). RBF increased significantly; however, outer cortical blood flow and GFR were not significantly altered. PRA increased twofold during PSPX infusion. The vasoconstrictor responses to bolus injections of 2-chloroadenosine (100 mumol) were attenuated by 58 and 86% during the low and high doses of PSPX and to a lesser extent with aminophylline/theophylline infusions. At renal arterial pressures above the inflection point, the slope of the average pressure-flow relationship during PSPX infusion was close to zero and was not significantly different from control. Similarly, autoregulatory capability was not altered during infusions of theophylline or aminophylline. These data provide further evidence that endogenous adenosine contributes substantially to the control of renin release but only modestly to the control of RBF and GFR and to renal autoregulatory capability. The natriuretic responses during adenosine blockade, which occurred in the face of elevated renin levels, support the hypothesis that endogenous adenosine enhances tubular sodium reabsorption rate.  (+info)

Nucleoside and nucleobase transporters of primary human cardiac microvascular endothelial cells: characterization of a novel nucleobase transporter. (74/208)

Levels of cardiovascular active metabolites, like adenosine, are regulated by nucleoside transporters of endothelial cells. We characterized the nucleoside and nucleobase transport capabilities of primary human cardiac microvascular endothelial cells (hMVECs). hMVECs accumulated 2-[3H]chloroadenosine via the nitrobenzylmercaptopurine riboside-sensitive equilibrative nucleoside transporter 1 (ENT1) at a V(max) of 3.4 +/- 1 pmol.microl(-1).s(-1), with no contribution from the nitrobenzylmercaptopurine riboside-insensitive ENT2. Inhibition of 2-chloroadenosine uptake by ENT1 blockers produced monophasic inhibition curves, which are also compatible with minimal ENT2 expression. The nucleobase [3H]hypoxanthine was accumulated within hMVECs (K(m) = 96 +/- 37 microM; V(max) = 1.6 +/- 0.3 pmol.microl(-1).s(-1)) despite the lack of a known nucleobase transport system. This novel transporter was dipyridamole-insensitive but could be inhibited by adenine (K(i) = 19 +/- 7 microM) and other purine nucleobases, including chemotherapeutic analogs. A variety of other cell types also expressed the nucleobase transporter, including the nucleoside transporter-deficient PK(15) cell line (PK15NTD). Further characterization of [3H]hypoxanthine uptake in the PK15NTD cells showed no dependence on Na(+) or H(+). PK15NTD cells expressing human ENT2 accumulated 4.5-fold more [3H]hypoxanthine in the presence of the ENT2 inhibitor dipyridamole than did PK15NTD cells or hMVECs, suggesting trapping of ENT2-permeable metabolites. Understanding the nucleoside and nucleobase transporter profiles in the vasculature will allow for further study into their roles in pathophysiological conditions such as hypoxia or ischemia.  (+info)

Multiple myeloma cell killing by depletion of the MET receptor tyrosine kinase. (75/208)

Multiple myeloma (MM) is an invariably fatal plasma cell malignancy, primarily due to the therapeutic resistance which ultimately arises. Much of the resistance results from the expression of various survival factors. Despite this, the ribonucleoside analogue, 8-chloro-adenosine (8-Cl-Ado), is cytotoxic to a number of MM cell lines. Previously, we established that the analogue incorporates into the RNA and inhibits mRNA synthesis. Because 8-Cl-Ado is able to overcome survival signals present in MM cells and inhibits mRNA synthesis, it is likely that the drug induces cytotoxicity by depleting the expression of critical MM survival genes. We investigated this question using gene array analysis, real-time reverse transcription-PCR, and immunoblot analysis on 8-Cl-Ado-treated MM.1S cells and found that the mRNA and protein levels of the receptor tyrosine kinase MET decrease prior to apoptosis. To determine MET's role in 8-Cl-Ado cytotoxicity, we generated MM.1S clones stably expressing a MET ribozyme. None of the clones expressed <25% of the basal levels of MET mRNA, suggesting that a threshold level of MET is necessary for their survival. Additionally, the ribozyme knockdown lines were more sensitive to the cytotoxic actions of 8-Cl-Ado as caspase-3 activation and the induction of poly-ADP-ribose polymerase (PARP) cleavage were more pronounced and evident 12 h earlier than in the parental cells. We further established MET's role in MM cell survival by demonstrating that a retroviral MET RNA interference construct induces PARP cleavage in MM.1S cells. These results show that MET provides a survival mechanism for MM cells. 8-Cl-Ado overcomes MM cell survival by a mechanism that involves the depletion of MET.  (+info)

Protein kinase A-independent inhibition of proliferation and induction of apoptosis in human thyroid cancer cells by 8-Cl-adenosine. (76/208)

PURPOSE: Protein kinase A (PKA) affects cell proliferation in many cell types and is a potential target for cancer treatment. PKA activity is stimulated by cAMP and cAMP analogs. One such substance, 8-Cl-cAMP, and its metabolite 8-Cl-adenosine (8-Cl-ADO) are known inhibitors of cancer cell proliferation; however, their mechanism of action is controversial. We have investigated the antiproliferative effects of 8-Cl-cAMP and 8-CL-ADO on human thyroid cancer cells and determined PKA's involvement. EXPERIMENTAL DESIGN: We employed proliferation and apoptosis assays and PKA activity and cell cycle analysis to understand the effect of 8-Cl-ADO and 8-Cl-cAMP on human thyroid cancer and HeLa cell lines. RESULTS: 8-Cl-ADO inhibited proliferation of all cells, an effect that lasted for at least 4 d. Proliferation was also inhibited by 8-Cl-cAMP, but this inhibition was reduced by 3-isobutyl-1-methylxanthine; both drugs stimulated apoptosis, and 3-isobutyl-1-methylxanthine drastically reduced 8-Cl-cAMP-induced cell death. 8-Cl-ADO induced cell accumulation in G1/S or G2/M cell cycle phases and differentially altered PKA activity and subunit levels. PKA stimulation or inhibition and adenosine receptor agonists or antagonists did not significantly affect proliferation. CONCLUSIONS: 8-Cl-ADO and 8-Cl-cAMP inhibit proliferation, induce cell cycle phase accumulation, and stimulate apoptosis in thyroid cancer cells. The effect of 8-Cl-cAMP is likely due to its metabolite 8-Cl-ADO, and PKA does not appear to have direct involvement in the inhibition of proliferation by 8-Cl-ADO. 8-Cl-ADO may be a useful therapeutic agent to be explored in aggressive thyroid cancer.  (+info)

Activity and toxicity of 2-CDA in Langerhans cell histiocytosis: a single institutional experience. (77/208)

BACKGROUND: Langerhans cell histiocytosis (LCH) is a rare disorder characterized by clonal proliferation of immature and abnormal bone marrow derived langerhans cells. Treatment is usually multimodal. Potent anti-monocyte as well as immunomodulatory activity of 2-CDA and its proven efficacy in many lymphoproliferative disorders has made 2-CDA a rational choice in treatment of LCH. AIM: To evaluate the efficacy and toxicity profile of 2-CDA in children with relapsed or refractory LCH. SETTING AND DESIGN: This is a pilot study and we present the initial data of the first seven patients treated at our institution. MATERIALS AND METHODS: Seven patients of relapsed and refractory LCH were enrolled from July 2000 to June 2004. The cohort of seven patients included six males and one female with a median age at initiation of cladribine was 2.25 years (range, 1.67 to 7.0 years). Three patients had received one prior chemotherapy regimen while the rest were heavily pretreated. Cladribine was administered over two hours IV daily for five days and repeated every four weeks. RESULTS: After a median of six courses of cladribine (range, 2 to 9), two (33%) patients achieved PR and two (33%) patients have SD on imaging but are clinically better. None experienced grade 3 or 4 hematologic toxicity. At a median follow-up of 19 months (range, 8 to 52 months), five patients remain alive and one patient has died. CONCLUSION: Our study shows that single agent 2-CDA is active and well-tolerated in children with relapsed or refractory LCH.  (+info)

Paradoxical effects of adenosine receptor ligands on hydroxyl radical generation by L-DOPA in the rat striatum. (78/208)

Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with selective loss of dopaminergic neurons in substantia nigra pars compacta. Among the proposed mechanisms of dopaminergic degeneration, oxidative stress is believed to play an important role. On the other hand, L-DOPA used as the main medication in PD and overproduction of dopamine (DA) in striatal neurons could elicit toxic effects due to formation of free radicals (FRs). Adenosine, an endogenous neuromodulator was shown in various experimental models to have neuroprotective properties. In our study, we investigated the role of adenosine A(1) and A(2A) receptor ligands in hydroxyl radical generation by L-DOPA in the rat striatum. The hydroxyl radical was assayed by HPLC-ED as a product of its reaction with p-hydroxybenzoic acid (PBA). Intrastriatal infusion of L-DOPA(50 microM) markedly increased dialysate level of DA and 3,4-dihydroxybenzoic acid (3,4-DHBA). An adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA, 25-50 microM), nonselectiveA(1)/A(2A) receptor agonist 2-chloroadenosine (2-CADO, 50-100 microM), and selective A(2A) receptor agonist CGS 21680 (25-50 microM) decreased the level of 3,4-DHBA. A non-selective A(1)/A(2A) adenosine receptor antagonist caffeine (100 microM) produced similar effect on 3,4-DHBA level. At the same time, CPA and 2-CADO, but not CGS 21680 or caffeine, decreased L-DOPA-induced DA release. The adenosine receptor ligands alone only weakly changed extracellular DA level and did not influence hydroxyl radical production. However, they showed scavenging activity in Fenton reaction in vitro. The primary caffeine metabolite in rodents, 1,3,7-trimethyl uric acid (1,3,7-mUA) decreased both, DA synthesis and 3,4-DHBA level. Thus, paradoxically, both agonists of A(1) receptor and agonist of A(2A) receptor as well as antagonist of A(1) and A(2A) receptors (caffeine), all decreased generation of FRs. Our study suggests that a decrease in hydroxyl radical generation caused by adenosine receptor ligands results from attenuation of L-DOPA-induced DA release or from their scavenging activity.  (+info)

Inhibition of ATP synthase by chlorinated adenosine analogue. (79/208)

 (+info)

Adenosine regulation of microtubule dynamics in cardiac hypertrophy. (80/208)

 (+info)