Spinal astrocytic activation contributes to mechanical allodynia in a rat chemotherapy-induced neuropathic pain model. (73/119)

 (+info)

2-Aminoadipic acid is a biomarker for diabetes risk. (74/119)

 (+info)

Enhancing effect of lysine combined with other compounds on cephamycin C production in Streptomyces clavuligerus. (75/119)

 (+info)

Lysine catabolism in Streptomyces spp. is primarily through cadaverine: beta-lactam producers also make alpha-aminoadipate. (76/119)

Genetic and biochemical evidence was obtained for lysine catabolism via cadaverine and delta-aminovalerate in both the beta-lactam producer Streptomyces clavuligerus and the nonproducer Streptomyces lividans. This pathway is used when lysine is supplied as the sole source of nitrogen for the organism. A second pathway for lysine catabolism is present in S. clavuligerus but not in S. lividans. It leads to alpha-aminoadipate, a precursor for beta-lactam biosynthesis. Since it does not allow S. clavuligerus to grow on lysine as the sole nitrogen source, this pathway may be used exclusively to provide a precursor for beta-lactam biosynthesis. beta-Lactam producers were unable to grow well on alpha-aminoadipate as the only nitrogen source, whereas three of seven species not known to produce beta-lactam grew well under the same conditions. Lysine epsilon-aminotransferase, the initial enzyme in the alpha-aminoadipate pathway for lysine catabolism, was detected in cell extracts only from the beta-lactam producers. These results suggest that synthesis of alpha-aminoadipate is exclusively a secondary metabolic trait, present or expressed only in beta-lactam producers, while genes governing the catabolism of alpha-aminoadipate are present or fully expressed only in beta-lactam nonproducers.  (+info)

Influence of glutamine on the growth of human glioma and medulloblastoma in culture. (77/119)

Cellular supply of glutamine, an essential substrate for growth, is derived from extracellular fluid and de novo synthesis. We investigated the relative importance of these sources to the growth of six human anaplastic glioma- and one human medulloblastoma-derived permanent cell lines. Exogenous glutamine was limiting for the proliferation of glioma-derived lines D-54 MG, U-118 MG, and U-251 MG. In contrast, medulloblastoma-derived line TE-671 and glioma-derived lines U-373 MG, D-245 MG, and D-259 MG grew in the absence of supplemental glutamine. Two cell lines with contrasting glutamine requirements, D-54 MG and TE-671, were used to explore the pharmacological interference with glutamine metabolism. DL-alpha-Aminoadipic acid, a reported glutamic acid analogue with gliotoxic properties, significantly inhibited the growth of both lines. These effects were reversed by increasing glutamine, suggesting that the major action of DL-alpha-aminoadipic acid is as a glutamine antagonist. In contrast, the glutamine synthetase inhibitor delta-hydroxylysine demonstrated activity only against TE-671. Acivicin and 6-diazo-5-oxo-L-norleucine, glutamine analogues available for clinical use, reduced the proliferation of both cell lines at pharmacological concentrations. Methionine sulfoximine, a glutamine synthetase inhibitor previously used clinically, produced marked growth inhibition only against TE-671. These findings indicate that the synthesis and utilization of glutamine are potentially exploitable targets for the chemotherapy of some human gliomas and medulloblastomas.  (+info)

Effects of acidic amino acid antagonists upon the spectral properties of carp horizontal cells: circuitry of the outer retina. (78/119)

The acidic amino acid receptor antagonists, alpha-methylglutamate and alpha-aminoadipate, were applied to the carp retina to study their effects upon the spectral properties of horizontal cells and to elucidate the synaptic connections between horizontal cells and cones. Application of these antagonists strongly hyperpolarized the L-type cone horizontal cells and reduced the responses of these horizontal cells to red light more than to blue light. Application of Co2+ ions to the retina, a procedure which decreases transmitter release, also hyperpolarized the L-type cone horizontal cells but reduced the response of these horizontal cells to red and blue lights equally. These results suggest that red- or long wavelength-sensitive cones release a different transmitter onto L-type cone horizontal cells than do short wavelength-sensitive cones. Application of the acidic amino acid antagonists also revealed details of the feedback pathway from L-type cone horizontal cells to cones. Previous studies have shown that feedback varies directly with stimulus size and that the effects of feedback on the responses of cones are observed as a transient waveform at response onset (a large, hyperpolarizing potential that is quickly followed by a smaller plateau potential). Application of the acidic amino acid antagonists at a dose which partially hyperpolarized the horizontal cells selectively enhanced the response of the cells to blue lights, when full field, and not spot, stimuli were used. The antagonists also eliminated the transient at response onset. These findings are consistent with the presence of a feedback pathway from L-type cone horizontal cells to short wavelength cones but not to long (red-sensitive) cones.  (+info)

Induction of glutamate binding sites in hippocampal membranes by transient exposure to high concentrations of glutamate or glutamate analogs. (79/119)

The number of Na+-independent, Cl--dependent glutamate binding sites in rat hippocampal membranes is increased two- to fourfold after pre-exposing isolated membranes or hippocampal slices to high concentrations (0.1-10 mM) of L-glutamate or of glutamate analogs with high affinity for this binding site, such as quisqualate, homocysteate, or aminoadipate. N-Methylaspartate and kainate are ineffective. A similar binding increase is induced by transient exposure to the dipeptide tyrosylglutamate. The newly induced binding sites appear to be identical with pre-existing Cl--dependent binding sites by several criteria: They have a similar pharmacological profile, they are sensitive to low concentrations of Na+, and the number of sites can be further increased by transient exposure to micromolar calcium concentrations. Moreover, binding of [3H]APB, a ligand selective for the Cl--dependent glutamate binding sites, is also increased after glutamate preincubation. The induction of binding sites by high glutamate concentrations, described herein, is calcium-independent, not inhibited by leupeptin and, therefore, different from the previously described activation of binding sites by a calcium-sensitive protease. The high concentration of ligand needed to induce increased binding suggests the presence in hippocampal membranes of a binding site with low, millimolar affinity that is functionally related to the known high-affinity binding sites. Several interpretations of the observed effects and their implications for the possible relationship between the binding site and the synaptic receptor are discussed.  (+info)

Glucose represses formation of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine and isopenicillin N synthase but not penicillin acyltransferase in Penicillium chrysogenum. (80/119)

The content of alpha-aminoadipyl-cysteinyl-valine, the first intermediate of the penicillin biosynthetic pathway, decreased when Penicillium chrysogenum was grown in a high concentration of glucose. Glucose repressed the incorporation of [14C]valine into alpha-aminoadipyl-cysteinyl-[14C]valine in vivo. The pool of alpha-aminoadipic acid increased sevenfold in control (lactose-grown) penicillin-producing cultures, coinciding with the phase of rapid penicillin biosynthesis, but this increase was very small in glucose-grown cultures. Glucose stimulated homocitrate synthase and saccharopine dehydrogenase activities in vivo and increased the incorporation of lysine into proteins. These results suggest that glucose stimulates the flux through the lysine biosynthetic pathway, thus preventing alpha-aminoadipic acid accumulation. The repression of alpha-aminoadipyl-cysteinyl-valine synthesis by glucose was not reversed by the addition of alpha-aminoadipic acid, cysteine, or valine. Glucose also repressed isopenicillin N synthase, which converts alpha-aminoadipyl-cysteinyl-valine into isopenicillin N, but did not affect penicillin acyltransferase, the last enzyme of the penicillin biosynthetic pathway.  (+info)