Gene ilvY of Salmonella typhimurium. (9/13)

Evidence is presented for the existence in Salmonella typhimurium LT2 of the regulatory gene ilv Y. The Escherichia coli K-12 ilvY gene product is shown to complement a S. typhimurium ilvY mutation in vivo.  (+info)

Role of acetohydroxy acid isomeroreductase in biosynthesis of pantothenic acid in Salmonella typhimurium. (10/13)

Structural genes have been identified for all of the enzymes involved in the biosynthesis of pantothenic acid in Salmonella typhimurium and Escherichia coli K-12, with the exception of ketopantoic acid reductase, which catalyzes the conversion of alpha-ketopantoate to pantoate. The acetohydroxy acid isomeroreductase from S. typhimurium efficiently bound alpha-ketopantoate (K(m) = 0.25 mM) and catalyzed its reduction at 1/20 the rate at which alpha-acetolactate was reduced. Since two enzymes could apparently participate in the synthesis of pantoate, a S. typhimurium ilvC8 strain was mutagenized to derive strains completely blocked in the conversion of alpha-ketopantoate to pantoate. Several isolates were obtained that grew in isoleucine-valine medium supplemented with either pantoate or pantothenate, but not in the same medium supplemented with alpha-ketopantoate or beta-alanine. The mutations that conferred pantoate auxotrophy (designated panE) to these isolates appeared to be clustered, but were not linked to panB or panC. All panE strains tested had greatly reduced levels of ketopantoic acid reductase (3 to 12% of the activity present in DU201). The capacity of the isomeroreductase to synthesize pantoate in vivo was assessed by determining the growth requirements of ilvC(+) derivatives of panE ilvC8 strains. These strains required either alpha-ketopantoate, pantoate, or pantothenate when the isomeroreductase was present at low levels; when the synthesis of isomeroreductase was induced, panE ilvC(+) strains grew in unsupplemented medium. These phenotypes indicate that a high level of isomeroreductase is sufficient for the synthesis of pantoate. panE ilvC(+) strains also grew in medium supplemented with lysine and methionine. This phenotype resembles that of some S. typhimurium ilvG mutants (e.g., DU501) which are partially blocked in the biosynthesis of coenzyme A and are limited for succinyl coenzyme A. panE ilvC(+) strains which lack the acetohydroxy acid synthases required only methionine for growth (in the presence of leucine, isoleucine, and valine). This and other evidence suggested that the synthesis of pantoic acid by isomeroreductase was blocked by the alpha-acetohydroxy acids and that pantoic acid synthesis was enhanced in the absence of these intermediates, even when the isomeroreductase was at low levels. panE ilvC(+) strains reverted to pantothenate independence. Several of these revertants were shown to have elevated isomeroreductase levels under noninduced and induced conditions; the suppressing mutation in each revertant was shown to be closely linked to ilvC by P22 transduction. This procedure presents a means for obtaining mutants with altered regulation of isomeroreductase.  (+info)

Mutations in the ilvY gene of Escherichia coli K-12 that cause constitutive expression of ilvC. (11/13)

A derivative of Escherichia coli K-12 bearing an ilvC-lac fusion has been studied. beta-Galactosidase formation in this strain is under the control of the ilvC promoter and is therefore induced by the acetohydroxy acids. Derivatives of this fusion strain were isolated that constitutively expressed beta-galactosidase. When an ilvC-containing episome was introduced into these strains, acetohydroxy acid isomeroreductase was also constitutively expressed. The lesions are trans dominant and lie in ilvY, the structural gene specifying a positive control element, v, needed for induction of the isomeroreductase. It was concluded from measurements of beta-galactosidase levels in various diploid strains that, although wild-type v requires inducer to act as a positive control element, it does not act as a repressor in the absence of inducer.  (+info)

An enzyme in yeast mitochondria that catalyzes a step in branched-chain amino acid biosynthesis also functions in mitochondrial DNA stability. (12/13)

The yeast mitochondrial high mobility group protein Abf2p is required, under certain growth conditions, for the maintenance of wild-type (rho+) mitochondrial DNA (mtDNA). We have identified a multicopy suppressor of the mtDNA instability phenotype of cells with a null allele of the ABF2 gene (delta abf2). The suppressor is a known gene, ILV5, encoding the mitochondrial protein, acetohydroxy acid reductoisomerase, which catalyzes a step in branched-chain amino acid biosynthesis. Efficient suppression occurs with just a 2- to 3-fold increase in ILV5 copy number. Moreover, in delta abf2 cells with a single copy of ILV5, changes in mtDNA stability correlate directly with changes in conditions that are known to affect ILV5 expression. Wild-type mtDNA is unstable in cells with an ILV5 null mutation (delta ilv5), leading to the production of mostly rho- petite mutants. The instability of rho+ mtDNA in delta ilv5 cells is not simply a consequence of a block in branched-chain amino acid biosynthesis, since mtDNA is stable in cells with a null allele of the ILV2 gene, which encodes another enzyme of that pathway. The most severe instability of rho+ mtDNA is observed in cells with null alleles of both ABF2 and ILV5. We suggest that ILV5 encodes a bifunctional protein required for branched-chain amino acid biosynthesis and for the maintenance of rho+ mtDNA.  (+info)

Purification and characterization of a fusion protein of plant acetohydroxy acid synthase and acetohydroxy acid isomeroreductase. (13/13)

The nucleotide sequence coding for the Arabidopsis thaliana acetohydroxy acid synthase was genetically fused in frame with the nucleotide sequence coding for the Spinacia oleracea acetohydroxy acid isomeroreductase and expressed in Escherichia coli. This construction allowed the production of large amounts of soluble fusion protein. The pure chimeric enzyme exhibits high acetohydroxy acid synthase and acetohydroxy acid isomeroreductase specific activities. Fusion and native enzymes exhibit similar Km values for their substrates and for most cofactors. Furthermore, whereas native plant acetohydroxy acid synthase is highly unstable, the stability of this enzyme in the fusion has been increased. Thus, the chimeric enzyme appears to be a useful tool for the determination of kinetic and structural properties of plant acetohydroxy acid synthase.  (+info)