Alcohol-induced versus anion-induced states of alpha-chymotrypsinogen A at low pH. (9/251)

Characterization of conformational transition and folding intermediates is central to the study of protein folding. We studied the effect of various alcohols (trifluoroethanol (TFE), butanol, propanol, ethanol and methanol) and salts (K(3)FeCN(6), Na(2)SO(4), KClO(4) and KCl) on the acid-induced state of alpha-chymotrypsinogen A, a predominantly beta-sheet protein, at pH 2.0 by near-UV circular dichroism (CD), far-UV CD and 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence measurements. Addition of alcohols led to an increase in ellipticity value at 222 nm indicating the formation of alpha-helical structure. The order of effectiveness of alcohols was shown to be TFE>butanol>propanol>ethanol>methanol. ANS fluorescence data showed a decrease in fluorescence intensity on alcohol addition, suggesting burial of hydrophobic patches. The near-UV CD spectra showed disruption of tertiary structure on alcohol addition. No change in ellipticity was observed on addition of salts at pH 2.0, whereas in the presence of 2 M urea, salts were found to induce a molten globule-like state as evident from the increases in ellipticity at 222 nm and ANS fluorescence indicating exposure of hydrophobic regions of the protein. The effectiveness in inducing the molten globule-like state, i.e. both increase in ellipticity at 222 nm and increase in ANS fluorescence, followed the order K(3)FeCN(6)>Na(2)SO(4)>KClO(4)>KCl. The loss of signal in the near-UV CD spectrum on addition of alcohols indicating disordering of tertiary structure results suggested that the decrease in ANS fluorescence intensity may be attributed to the unfolding of the ANS binding sites. The results imply that the alcohol-induced state had characteristics of an unfolded structure and lies between the molten globule and the unfolded state. Characterization of such partially folded states has important implications for protein folding.  (+info)

Inhibition of human peripheral blood neutrophil respiratory burst by alcohol-based venipuncture site disinfection. (10/251)

Ethanol inhibits the respiratory burst of neutrophils. Therefore, the effects of alcohol-based skin disinfection on oxygen metabolism in neutrophils were tested using 70% ethanol or an ethanol-isopropanol-n-propanol mixture. Neutrophil respiratory burst activity as assessed fluorometrically by oxidation of 2', 7'-dichlorofluorescein diacetate increased at 10 min after disinfection with 70% ethanol compared to the activity at 30 s. The increase was significant for triggering oxidative burst with formyl-peptide but not with phorbol myristate acetate.  (+info)

The influence of sex, allergic rhinitis, and test system on nasal sensitivity to airborne irritants: a pilot study. (11/251)

"Nasal irritant sensitivity" is an important construct in environmental health science; functional measures, however, lack standardization. We performed duplicate measures of nasal irritant perceptual acuity on 16 subjects (evenly divided by sex and seasonal allergy status) using two different test compounds: carbon dioxide (CO2) (detection) and n-propanol (localization). The a priori hypotheses included a) allergic rhinitics will display lower perceptual thresholds than nonrhinitics; b) females will display lower perceptual thresholds than males; and c) estimates of perceptual acuity using the two test systems will be positively correlated. We obtained CO2 detection thresholds using an ascending concentration series, presenting 3-sec pulses of CO2, paired with air in random order, by nasal cannula. We obtained localization thresholds by simultaneously presenting stimuli (ascending concentrations of n-propanol vapor in air) and blanks (saturated water vapor in air) to opposite nostrils, with laterality randomized. In terms of test-retest reliability, individual replicate measures for CO2 detection thresholds correlated more closely than did the localization thresholds of volatile organic compounds (VOC) (r = 0.65 and r = 0.60, respectively). As an intertest comparison, log-transformed individual mean CO2 and VOC measures were positively correlated with an r of 0.63 (p < 0.01). In univariate analyses, sex predicted both log-transformed CO2 and VOC thresholds (females being more "sensitive"; p < 0.05 and 0.001, respectively). Nasal allergies predicted sensory testing results only in the multivariate analysis, and then only for VOC localization (p < 0.05). The question of population variation in nasal irritant sensitivity (as well as the generalizability of results across test compounds) deserves further attention.  (+info)

Homotropic cooperative binding of organic solvent vapors by solid trypsin. (12/251)

Homotropic cooperative binding was observed at vapor sorption of organic solvents (acetonitrile, propionitrile, ethanol, 1-propanol, 2-propanol, nitroethane) by dried solid trypsin from porcine pancreas (0.05 g H2O/g protein). The vapor sorption isotherms were obtained by the static method of gas chromatographic headspace analysis at 298 K for 'vapor solvent+solid trypsin' systems in the absence of the liquid phase. All isotherms have a sigmoidal shape with significant sorbate uptake only above the threshold of sorbate thermodynamic activity. On the sorption isotherms of non-hydroxylic sorbates the saturation of trypsin by organic solvent was observed above the sorbate threshold activity. The formation of inclusion compounds with phase transition between solvent-free and solvent-saturated trypsin is supposed. Approximation of obtained isotherms by the Hill equation gives the inclusion stoichiometry S, inclusion free energy, and the Hill constant N of clathrates. The inclusion stoichiometry S depends significantly on the size and shape of sorbate molecules and changes from S=31 mol of sorbate per mol of trypsin for ethanol to S=6 for nitroethane. The inclusion free energies determined for the standard states of pure liquid sorbate and infinitely dilute solution in toluene are in the range from -0.5 to -1.2 kJ/mol and from -3.1 to -8.1 kJ/mol, respectively, per 1 mol of sorbate. The Hill constants are relatively high: from N=5.6 for 1-propanol to N approximately equal to 10(3) for nitroethane. The implication of the obtained results for the interpretation of solvent effects on the enzyme activity and stability in low-water medium is discussed.  (+info)

Filamentous bacteriophage stability in non-aqueous media. (13/251)

BACKGROUND: Filamentous bacteriophage are used as general cloning vectors as well as phage display vectors in order to study ligand-receptor interactions. Exposure to biphasic chloroform-water interface leads to specific contraction of phage, to non-infective I- or S-forms. RESULTS: Upon exposure, phage were inactivated (non-infective) at methanol, ethanol and 1-propanol concentrations inversely dependent upon alcohol hydrophobicity. Infectivity loss of phage at certain concentrations of 1-propanol or ethanol coincided with changes in the spectral properties of the f1 virion in ultraviolet fluorescence and circular dichroism studies. CONCLUSIONS: The alcohols inactivate filamentous phage by a general mechanism--solvation of coat protein--thereby disrupting the capsid in a manner quite different from the previously reported I- and S-forms. The infectivity retention of phagemid pG8H6 in 99% acetonitrile and the relatively high general solvent resistance of the phage strains studied here open up the possibility of employing phage display in non-aqueous media.  (+info)

Perception of trigeminal chemosensory qualities in the elderly. (14/251)

One hundred healthy elderly subjects (65-88 years) were tested for their ability to: (i) assign verbal labels from a list of trigeminal type descriptors to six odorants known to have a strong trigeminal component; (ii) discriminate between intensity-matched pairs of these odorants in an odd-ball paradigm. Their performance was compared with that of 100 young controls (23--36 years). Young controls judged menthol and cineole as distinctly cool and fresh, acetic cid as pungent and sour and acetone as pungent, but showed no clear descriptive profile for ethanol and propanol. The descriptive profiles given by the elderly subjects correlated significantly with those given by the young controls for all six odorants and thus indicate a high degree of conformity in trigeminal perception of chemosensory qualities between the two age groups. In the odd-ball test the young controls correctly discriminated an average of 8.0 of 9 stimulus pairs presented, with most mistakes occurring in response to pairs with a similar trigeminal profile. With an average of 6.4 of 9 items correct, the discrimination performance of the elderly subjects was significantly poorer than that of the young controls but nevertheless significantly above chance at the group level with all 9 stimulus pairs. These results suggest that the nasal trigeminal system may experience some degree of age-related impairment but still contributes considerably to the perception and discrimination of chemosensory qualities in the elderly.  (+info)

Ligand exchange of major histocompatibility complex class II proteins is triggered by H-bond donor groups of small molecules. (15/251)

Hydrogen bonds (H-bonds) are crucial for the stability of the peptide-major histocompatibility complex (MHC) complex. In particular, the H-bonds formed between the peptide ligand and the MHC class II binding site appear to have a great influence on the half-life of the complex. Here we show that functional groups with the capacity to disrupt hydrogen bonds (e.g. -OH) can efficiently catalyze ligand exchange reactions on HLA-DR molecules. In conjunction with simple carrier molecules (such as propyl or benzyl residues), they trigger the release of low affinity ligands, which permits the rapid binding of peptides with higher affinity. Similar to HLA-DM, these compounds are able to influence the MHC class II ligand repertoire. In contrast to HLA-DM, however, these simple small molecules are still active at neutral pH. Under physiological conditions, they increase the number of "peptide-receptive" MHC class II molecules and facilitate exogenous peptide loading of dendritic cells. The drastic acceleration of the ligand exchange on these antigen presenting cells suggests that, in general, availability of H-bond donors in the extracellular milieu controls the rate of MHC class II ligand exchange reactions on the cell surface. These molecules may therefore be extremely useful for the loading of antigens onto dendritic cells for therapeutic purposes.  (+info)

Alcoholysis catalyzed by Candida antarctica lipase B in a gas/solid system obeys a Ping Pong Bi Bi mechanism with competitive inhibition by the alcohol substrate and water. (16/251)

The kinetics of alcoholysis of methyl propionate and n-propanol catalyzed by Candida antarctica lipase B supported onto silanized Chromosorb P was studied in a continuous solid/gas reactor. In this system the solid phase is composed of a packed enzymatic sample and is percolated by nitrogen as carrier gas, which simultaneously carries substrates to the enzyme while removing reaction products. In this reactor the thermodynamic activity of substrates and effectors can be perfectly adjusted allowing kinetic studies to be performed under different operating conditions. The kinetics obtained for alcoholysis were suggested to fit a Ping Pong Bi Bi mechanism with dead-end inhibition by the alcohol. The values of all apparent kinetic parameters were calculated and the apparent dissociation constant of enzyme for gaseous ester was found very low compared with the one obtained for liquid ester in organic medium, certainly due to the more efficient diffusion in the gaseous phase. The effect of water thermodynamic activity was also investigated. Water was found to act as a competitive inhibitor, with a higher inhibition constant than n-propanol. Thus alcoholysis of gaseous methyl propionate and n-propanol catalyzed by C. antarctica lipase B was found to obey the same kinetic mechanism as in other non-conventional media such as organic liquid media and supercritical carbon dioxide, but with much higher affinity for the substrates.  (+info)