Luteinizing hormone inhibits conversion of pregnenolone to progesterone in luteal cells from rats on day 19 of pregnancy. (1/1387)

We have previously reported that intrabursal ovarian administration of LH at the end of pregnancy in rats induces a decrease in luteal progesterone (P4) synthesis and an increase in P4 metabolism. However, whether this local luteolytic effect of LH is exerted directly on luteal cells or on other structures, such as follicular or stromal cells, to modify luteal function is unknown. The aim of the present study was to determine the effect of LH on isolated luteal cells obtained on Day 19 of pregnancy. Incubation of luteal cells with 1, 10, 100, or 1000 ng/ml of ovine LH (oLH) for 6 h did not modify basal P4 production. The addition to the culture medium of 22(R)-hydroxycholesterol (22R-HC, 10 microgram/ml), a membrane-permeable P4 precursor, or pregnenolone (10(-2) microM) induced a significant increase in P4 accumulation in the medium in relation to the control value. When luteal cells were preincubated for 2 h with oLH, a significant (p < 0.01) reduction in the 22R-HC- or pregnenolone-stimulated P4 accumulation was observed. Incubation of luteal cells with dibutyryl cAMP (1 mM, a cAMP analogue) plus isobutylmethylxanthine (1 mM, a phosphodiesterase inhibitor) also inhibited pregnenolone-stimulated P4 accumulation. Incubation with an inositol triphosphate synthesis inhibitor, neomycin (1 mM), or an inhibitor of intracellular Ca2+ mobilization, (8,9-N, N-diethylamino)octyl-3,4,5-trimethoxybenzoate (1 mM), did not prevent the decrease in pregnenolone-stimulated P4 secretion induced by oLH. It was concluded that the luteolytic action of LH in late pregnancy is due, at least in part, to a direct action on the luteal cells and that an increase in intracellular cAMP level might mediate this effect.  (+info)

Phosphorylation of the small heat shock-related protein, HSP20, in vascular smooth muscles is associated with changes in the macromolecular associations of HSP20. (2/1387)

Cyclic nucleotide-dependent vasorelaxation is associated with increases in the phosphorylation of a small heat shock-related protein, HSP20. We hypothesized that phosphorylation of HSP20 in vascular smooth muscles is associated with alterations in the macromolecular associations of HSP20. Treatment of bovine carotid artery smooth muscles with the phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine, and the adenylate cyclase activator, forskolin, led to increases in the phosphorylation of HSP20 and dissociation of macromolecular aggregates of HSP20. However, 3-isobutyl-1-methylxanthine and forskolin treatment of a muscle that is uniquely refractory to cyclic nucleotide-dependent vasorelaxation, human umbilical artery smooth muscle, did not result in increases in the phosphorylation of HSP20 or to dissociation of macromolecular aggregates. HSP20 can be phosphorylated in vitro by the catalytic subunit of cAMP-dependent protein kinase (PKA) in both carotid and umbilical arteries and this phosphorylation of HSP20 is associated with dissociation of macromolecular aggregates of HSP20. Activation of cyclic nucleotide-dependent signaling pathways does not lead to changes in the macromolecular associations of another small heat shock protein, HSP27. Interestingly, the myosin light chains (MLC20) are in similar fractions as the HSP20, and phosphorylation of HSP20 is associated with changes in the macromolecular associations of MLC20. These data suggest that increases in the phosphorylation of HSP20 are associated with changes in the macromolecular associations of HSP20. HSP20 may regulate vasorelaxation through a direct interaction with specific contractile regulatory proteins.  (+info)

Identification of a region of the C-terminal domain involved in short-term desensitization of the prostaglandin EP4 receptor. (3/1387)

1. The prostaglandin EP4 receptor, which couples to stimulation of adenylyl cyclase, undergoes rapid agonist-induced desensitization when expressed in CHO-K1 cells. 2. Truncation of the 488-amino acid receptor at residue 350 removes the carboxy-terminal domain and abolishes desensitization. 3. To further delineate residues involved in desensitization, the receptor was truncated at position 408, 383 or 369. Receptors truncated at position 408 or 383 underwent PGE2-induced desensitization, whereas the receptor truncated at position 369 displayed sustained activity, indicating that the essential residues for desensitization lie between 370 and 383. 4. The six serines in the 14-amino acid segment between residues 370 and 383 were mutated to alanine, retaining the entire C-terminal domain. Desensitization was absent in cells expressing this mutant. 5. The results indicate involvement of serines located between 370 and 382 in rapid desensitization of the EP4 receptor.  (+info)

Melatonin inhibits release of luteinizing hormone (LH) via decrease of [Ca2+]i and cyclic AMP. (4/1387)

The role of [Ca2+]i and cAMP in transduction of the melatonin inhibitory effect on GnRH-induced LH release from neonatal rat gonadotrophs has been studied, because melatonin inhibits the increase of both intracellular messengers. Treatments increasing Ca2+ influx (S(-) Bay K8644 or KCI) or cAMP concentration (8-bromo-cAMP or 3-isobutyl-1-methylxanthine) potentiated the GnRH-induced LH release and partially diminished the inhibitory effect of melatonin. Combination of the treatments increasing cAMP and calcium concentrations blocked completely the melatonin inhibition of LH release. The combined treatment with 8-bromo-cAMP and S(-) Bay K8644 also blocked the melatonin inhibition of GnRH-induced [Ca2+]i increase in 89 % of the gonadotrophs, while any of the treatments alone blocked the melatonin effect in about 25 % of these cells. These observations suggest that a cAMP-dependent pathway is involved in regulation of Ca2+ influx by melatonin and melatonin inhibition of LH release may be mediated by the decrease of both messengers.  (+info)

Modulation of human airway smooth muscle proliferation by type 3 phosphodiesterase inhibition. (5/1387)

Elevation in cell cAMP content can inhibit mitogenic signaling in cultured human airway smooth muscle (HASM) cells. We studied the effects of the type 3-selective phosphodiesterase inhibitor siguazodan, the type 4-selective phosphodiesterase inhibitor rolipram, and the nonselective inhibitor 3-isobutyl-1-methylxanthine (IBMX) on proliferation of cultured HASM cells. At concentrations selective for the type 3 phosphodiesterase isoform, siguazodan inhibited both [3H]thymidine incorporation (IC50 2 microM) and the increase in cell number (10 microM; 64% reduction) induced by platelet-derived growth factor-BB (20 ng/ml). These effects were mimicked by IBMX. At concentrations selective for type 4 phosphodiesterase inhibition, rolipram was without effect. A 20-min exposure to siguazodan and rolipram did not increase whole cell cAMP levels. However, in HASM cells transfected with a cAMP-responsive luciferase reporter (p6CRE/Luc), increases in cAMP-driven luciferase expression were seen with siguazodan (3.9-fold) and IBMX (16.5-fold). These data suggest that inhibition of the type 3 phosphodiesterase isoform present in airway smooth muscle results in inhibition of mitogenic signaling, possibly through an increase in cAMP-driven gene expression.  (+info)

Isoforms of the Na-K-2Cl cotransporter in murine TAL II. Functional characterization and activation by cAMP. (6/1387)

The functional properties of alternatively spliced isoforms of the mouse apical Na+-K+-2Cl- cotransporter (mBSC1) were examined, using expression in Xenopus oocytes and measurement of 22Na+ or 86Rb+ uptake. A total of six isoforms, generated by the combinatorial association of three 5' exon cassettes (A, B, and F) with two alternative 3' ends, are expressed in mouse thick ascending limb (TAL) [see companion article, D. B. Mount, A. Baekgaard, A. E. Hall, C. Plata, J. Xu, D. R. Beier, G. Gamba, and S. C. Hebert. Am. J. Physiol. 276 (Renal Physiol. 45): F347-F358, 1999]. The two 3' ends predict COOH-terminal cytoplasmic domains of 129 amino acids (the C4 COOH terminus) and 457 amino acids (the C9 terminus). The three C9 isoforms (mBSC1-A9/F9/B9) all express Na+-K+-2Cl- cotransport activity, whereas C4 isoforms are nonfunctional in Xenopus oocytes. Activation or inhibition of protein kinase A (PKA) does not affect the activity of the C9 isoforms. The coinjection of mBSC1-A4 with mBSC1-F9 reduces tracer uptake, compared with mBSC1-F9 alone, an effect of C4 isoforms that is partially reversed by the addition of cAMP-IBMX to the uptake medium. The inhibitory effect of C4 isoforms is a dose-dependent function of the alternatively spliced COOH terminus. Isoforms with a C4 COOH terminus thus exert a dominant negative effect on Na+-K+-2Cl- cotransport, a property that is reversed by the activation of PKA. This interaction between coexpressed COOH-terminal isoforms of mBSC1 may account for the regulation of Na+-K+-2Cl- cotransport in the mouse TAL by hormones that generate cAMP.  (+info)

Insulin-secreting activity of the traditional antidiabetic plant Viscum album (mistletoe). (7/1387)

Viscum album (mistletoe) has been documented as a traditional treatment of diabetes. In acute 20-min tests, 1-10 mg/ml aqueous extract of mistletoe evoked a stepwise 1.1- to 12.2-fold stimulation of insulin secretion from clonal pancreatic B-cells. This effect was abolished by 0.5 mM diazoxide and prior exposure to extract did not alter subsequent stimulation of insulin secretion induced by 10 mM L-alanine, thereby negating a detrimental effect on cell viability. The insulin-releasing effect of mistletoe extract was unaltered by 16.7 mM glucose, l-alanine (10 mM), 3-isobutyl-1-methylxanthine (IBMX) (1 mM), or a depolarising concentration of KCl (25 mM). The ability of extract to enhance insulin secretion did not depend upon the use of heat during extract preparation and was not mediated by lectins. These results demonstrate the presence of insulin-releasing natural product(s) in Viscum album which may contribute to the reported antidiabetic property of the plant.  (+info)

Aldosterone, not estradiol, is the physiological agonist for rapid increases in cAMP in vascular smooth muscle cells. (8/1387)

BACKGROUND: Steroid-induced gene regulation in the endocrine tissues and vascular wall is achieved through the interaction of specific receptor proteins and promoters of target genes. In addition to these delayed steroid actions, rapid effects of steroids have been reported in various tissues that were clearly incompatible with the classic theory of genomic steroid action. METHODS AND RESULTS: Because high doses of 17beta-estradiol have been shown to modulate intracellular cAMP levels in vascular smooth muscle cells, steroid-induced stimulation of adenylate cyclase stimulation and phosphorylation of cAMP response element binding protein was investigated in porcine coronary artery vascular smooth muscle cells. Aldosterone induces a approximately 1.5- to 2.5-fold increase in intracellular cAMP levels (EC50 approximately 0.01 to 0.1 nmol/L) within 1 minute, whereas 17beta-estradiol and hydrocortisone act only at supraphysiological concentrations (10 micromol/L). Aldosterone-induced changes in intracellular cAMP are calcium dependent; they are not blocked by inhibitors of mineralocorticoid receptors, transcription, or protein synthesis. In addition, aldosterone induces a time-dependent phosphorylation of cAMP response element binding protein with potential transcriptional importance. CONCLUSIONS: A nongenomic modulation of vascular smooth muscle cells by aldosterone is consistent with the data that aldosterone, not estrogen, is the physiological stimulus for cAMP.  (+info)