Differential determination of phospholipase A(2) and PAF-acetylhydrolase in biological fluids using fluorescent substrates. (25/562)

The purpose of the present study was the development and evaluation of a fluorimetric method for the screening and differential determination of phospholipase A(2) and PAF-acetylhydrolase in bronchoalveolar lavage (BAL) fluid and serum. Phospholipase A(2) was determined using C(12)-NBD-PC in the presence of Ca(2+), from the slope of the fluorescence enhancement due to the formation of C(12)-NBD-fatty acid. PAF-acetylhydrolase was determined using C(6)-NBD-PC, from the slope of the curve due to C(6)-NBD-fatty acid formation in the absence of Ca(2+). The results were confirmed after TLC analysis. The method's selectivity was evaluated by comparing to radiometric measurements. Light scattering did not interfere and inner filter effects was not observed under our experimental conditions. The effects of pH, temperature, and Ca(2+) were investigated. Protein caused an increase in the background fluorescence of both NBD-PCs. The standard curves of both NBD-fatty acids exhibited the same slope. Linearity extended at least up to 4. 5 nmoles per ml of reaction mixture at the normal pH 7.4. The fluorescence of the NBD-fatty acids remained stable for increasing concentrations of BAL fluid and serum and for BSA up to 100 microg/ml of reaction mixture. Porcine pancreatic PLase A(2) showed preference for C(12)-NBD-PC in the presence of Ca(2+), while without Ca(2+), serum PAF-AcH hydrolyzed only C(6)-NBD-PC. The method is highly sensitive, accurate, and reproducible and can be applied for the differential determination of phospholipase A(2) and PAF-acetylhydrolase activities in BAL fluid and serum.  (+info)

Lipoprotein-associated phospholipase A(2), platelet-activating factor acetylhydrolase, is expressed by macrophages in human and rabbit atherosclerotic lesions. (26/562)

We studied the expression of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)), an enzyme capable of hydrolyzing platelet-activating factor (PAF), PAF-like phospholipids, and polar-modified phosphatidylcholines, in human and rabbit atherosclerotic lesions. Oxidative modification of low-density lipoprotein, which plays an important role in atherogenesis, generates biologically active PAF-like modified phospholipid derivatives with polar fatty acid chains. PAF is known to have a potent proinflammatory activity and is inactivated by its hydrolysis. On the other hand, lysophosphatidylcholine and oxidized fatty acids released from oxidized low-density lipoprotein as a result of Lp-PLA(2) activity are thought to be involved in the progression of atherosclerosis. Using combined in situ hybridization and immunocytochemistry, we detected Lp-PLA(2) mRNA and protein in macrophages in both human and rabbit atherosclerotic lesions. Reverse transcriptase-polymerase chain reaction analysis indicated an increased expression of Lp-PLA(2) mRNA in human atherosclerotic lesions. In addition, approximately 6-fold higher Lp-PLA(2) activity was detected in atherosclerotic aortas of Watanabe heritable hyperlipidemic rabbits compared with normal aortas from control rabbits. It is concluded that (1) macrophages in both human and rabbit atherosclerotic lesions express Lp-PLA(2), which could cleave any oxidatively modified phosphatidylcholine present in the lesion area, and (2) modulation of Lp-PLA(2) activity could lead to antiatherogenic effects in the vessel wall.  (+info)

Plasma and Lp(a)-associated PAF-acetylhydrolase activity in uremic patients undergoing different dialysis procedures. (27/562)

Plasma and Lp(a)-associated PAF-acetylhydrolase activity in uremic patients undergoing different dialysis procedures. BACKGROUND: Platelet-activating factor (PAF) is a potent inflammatory mediator associated with several physiopathological conditions, including renal diseases. PAF is degraded to the inactive metabolite lyso-PAF by PAF-acetylhydrolase (PAF-AH), which is considered as a potent anti-inflammatory and anti-atherogenic enzyme associated with lipoproteins. In this study, we evaluated the plasma- and lipoprotein(a) [Lp(a)]-associated PAF-AH activity in relationship to plasma lipid parameters and Lp(a) isoform size in patients with mild/moderate chronic renal failure (CRF), as well as in hemodialysis (HD) and chronic ambulatory peritoneal dialysis (CAPD) patients. METHODS: We studied 74 patients undergoing maintenance HD, 44 patients undergoing CAPD, 56 patients with mild/moderate CRF, and 98 healthy subjects whose lipid profile, as well as plasma and high-density lipoprotein (HDL)-associated PAF-AH activity, was determined. Moreover, the effect of Lp(a) plasma levels on the distribution of PAF-AH among plasma lipoproteins, as well as the specific activity and kinetic properties of PAF-AH on two different Lp(a) isoforms, was measured in each studied group. RESULTS: The plasma PAF-AH activity in all studied groups was significantly higher than in controls, and the increase was more profound in CAPD patients. The HDL-associated PAF-AH activity, expressed per milliliter of plasma, was similar among all studied groups; however, when it was expressed as either per milligrams of HDL cholesterol or per milligrams of plasma apolipoprotein (apo) AI, the PAF-AH activity was significantly higher in all patient groups compared with controls. All patient groups had significantly elevated plasma Lp(a) levels, which altered the distribution of PAF-AH among the plasma lipoproteins compared with that observed in subjects with very low plasma Lp(a) levels (<8 mg/dl). Additionally, in each studied group, the specific activity as well as the apparent Km and Vmax values of the 19K4 apo(a) isoform were significantly higher (P < 0.01) compared with the values of the 23K4 isoform. However, the specific activity, as well as the Km and Vmax values on either the 19K4 apo(a) isoform or the 23K4 isoform, was significantly higher in CAPD patients compared with the other three groups. CONCLUSIONS: Plasma PAF-AH activity is increased in uremic patients. This elevation is more profound in CAPD patients, who also exhibit a more atherogenic lipid profile and more pronounced alterations in the specific activity and the kinetic constants of Lp(a)-associated PAF-AH.  (+info)

Vasoactive side effects of intravenous immunoglobulin preparations in a rat model and their treatment with recombinant platelet-activating factor acetylhydrolase. (28/562)

Previously, we observed in a rat model that intravenous administration of intramuscular immunoglobulin preparations induced a long-lasting hypotension, which appeared to be associated with the presence of IgG polymers and dimers in the preparations, but unrelated to complement activation. We found evidence that this hypotensive response is mediated by platelet-activating factor (PAF) produced by macrophages. In this study, we compared the vasoactive effects of 16 intravenous immunoglobulin (IVIG) products from 10 different manufacturers, in anesthetized rats. Eight of the IVIG preparations showed no hypotensive effects (less than 15% decrease), whereas the other 8 had relatively strong effects (15%-50% decrease). The hypotensive effects correlated with the IgG dimer content of the preparations. Pretreatment of the rats with recombinant PAF acetylhydrolase completely prevented the hypotensive reaction on IVIG infusion, and administration after the onset of hypotension resulted in normalization of the blood pressure. We also observed PAF production on in vitro incubation of human neutrophils with IVIG, which could be blocked by anti-Fcgamma receptor antibodies. This indicates that induction of PAF generation may also occur in a human system. Our findings support the hypothesis that the clinical side effects of IVIG in patients may be caused by macrophage and neutrophil activation through interaction of IgG dimers with Fcgamma receptors. Because phagocyte activation may also lead to the release of other inflammatory mediators, recombinant PAF acetylhydrolase (rPAF-AH) provides a useful tool to determine whether PAF plays a role in the clinical side effects of IVIG. If so, rPAF-AH can be used for the treatment of those adverse reactions. (Blood. 2000;95:1856-1861)  (+info)

Recombinant human platelet-activating factor-acetylhydrolase inhibits airway inflammation and hyperreactivity in mouse asthma model. (29/562)

Numerous in vitro and in vivo studies in both animal models and human asthmatics have implicated platelet-activating factor (PAF) as an important inflammatory mediator in asthma. In a murine asthma model, we examined the anti-inflammatory activities of recombinant human PAF-acetylhydrolase (rPAF-AH), which converts PAF to biologically inactive lyso-PAF. In this model, mice sensitized to OVA by i.p. and intranasal (i.n.) routes are challenged with the allergen by i.n. administration. The OVA challenge elicits an eosinophil infiltration into the lungs with widespread mucus occlusion of the airways and results in bronchial hyperreactivity. The administration of rPAF-AH had a marked effect on late-phase pulmonary inflammation, which included a significant reduction in airway eosinophil infiltration, mucus hypersecretion, and airway hyperreactivity in response to methacholine challenge. These studies demonstrate that elevating plasma levels of PAF-AH through the administration of rPAF-AH is effective in blocking the late-phase pulmonary inflammation that occurs in this murine allergen-challenge asthma model. These results suggest that rPAF-AH may have therapeutic effects in patients with allergic airway inflammation.  (+info)

The role of cytoplasmic dynein in the human brain developmental disease lissencephaly. (30/562)

Lissencephaly is a brain developmental disorder characterized by disorganization of the cortical regions resulting from defects in neuronal migration. Recent evidence has implicated the human LIS-1 gene in Miller-Dieker lissencephaly and isolated lissencephaly sequence. LIS-1 is homologous to the fungal genes NudF and PAC1, which are involved in cytoplasmic dynein mediated nuclear transport, but it is also almost identical to a subunit of PAF acetylhydrolase, an enzyme which inactivates the lipid mediator platelet activating factor. Recent evidence from our laboratory has revealed that cytoplasmic dynein coimmunoprecipitates with LIS-1 in bovine brain cytosol, supporting a role in the dynein pathway in vertebrates. Overexpression of LIS-1 interferes with cell division, with noteworthy effects on chromosome attachment to the mitotic spindle and on the interaction of astral microtubules with the cell cortex. Other aspects of dynein function, such as the organization of the Golgi apparatus, are not affected. Together, these results suggest a role for LIS-1 in cytoplasmic dynein functions involving microtubule plus-ends. Furthermore, they suggest that mutations in LIS-1 may produce a lissencephalic phenotype either by interfering with the movement of neuronal nuclei within extending processes, or by interference with the division cycle of neuronal progenitor cells in the ventricular and subventricular zones of the developing nervous system.  (+info)

Lissencephaly associated mutations suggest a requirement for the PAFAH1B heterotrimeric complex in brain development. (31/562)

Human brain malformations, such as Miller-Dieker syndrome (MDS) or isolated lissencephaly sequence (ILS) may result from abnormal neuronal migration during brain development. MDS and ILS patients have a hemizygous deletion or mutation in the LIS1 gene (PAFAH1B1), therefore, the LIS1 encoded protein (Lis1) may play a role in neuronal migration. Lis1 is a subunit of a brain platelet-activating factor acetylhydrolase (PAFAH1B) where it forms a heterotrimeric complex with two hydrolase subunits, referred to as 29 kDa (PAFAH1B3) and 30 kDa (PAFAH1B2). In order to determine whether this heterotrimer is required for the developmental functions of PAFAH1B, we examined the binding properties of 29 and 30 kDa subunits to mutant Lis1 proteins. The results defined the critical regions of Lis1 for PAFAH1B complex formation and demonstrated that all human LIS1 mutations examined resulted in abolished or reduced capacity of Lis1 to interact with the 29 and 30 kDa subunits, suggesting that the PAFAH1B complex participates in the process of neuronal migration.  (+info)

Hippocampal abnormalities and enhanced excitability in a murine model of human lissencephaly. (32/562)

Human cortical heterotopia and neuronal migration disorders result in epilepsy; however, the precise mechanisms remain elusive. Here we demonstrate severe neuronal dysplasia and heterotopia throughout the granule cell and pyramidal cell layers of mice containing a heterozygous deletion of Lis1, a mouse model of human 17p13.3-linked lissencephaly. Birth-dating analysis using bromodeoxyuridine revealed that neurons in Lis1+/- murine hippocampus are born at the appropriate time but fail in migration to form a defined cell layer. Heterotopic pyramidal neurons in Lis1+/- mice were stunted and possessed fewer dendritic branches, whereas dentate granule cells were hypertrophic and formed spiny basilar dendrites from which the principal axon emerged. Both somatostatin- and parvalbumin-containing inhibitory neurons were heterotopic and displaced into both stratum radiatum and stratum lacunosum-moleculare. Mechanisms of synaptic transmission were severely disrupted, revealing hyperexcitability at Schaffer collateral-CA1 synapses and depression of mossy fiber-CA3 transmission. In addition, the dynamic range of frequency-dependent facilitation of Lis1+/- mossy fiber transmission was less than that of wild type. Consequently, Lis1+/- hippocampi are prone to interictal electrographic seizure activity in an elevated [K(+)](o) model of epilepsy. In Lis1+/- hippocampus, intense interictal bursting was observed on elevation of extracellular potassium to 6.5 mM, a condition that resulted in only minimal bursting in wild type. These anatomical and physiological hippocampal defects may provide a neuronal basis for seizures associated with lissencephaly.  (+info)