Tomography, Emission-Computed, Single-Photon: A method of computed tomography that uses radionuclides which emit a single photon of a given energy. The camera is rotated 180 or 360 degrees around the patient to capture images at multiple positions along the arc. The computer is then used to reconstruct the transaxial, sagittal, and coronal images from the 3-dimensional distribution of radionuclides in the organ. The advantages of SPECT are that it can be used to observe biochemical and physiological processes as well as size and volume of the organ. The disadvantage is that, unlike positron-emission tomography where the positron-electron annihilation results in the emission of 2 photons at 180 degrees from each other, SPECT requires physical collimation to line up the photons, which results in the loss of many available photons and hence degrades the image.Tomography, X-Ray Computed: Tomography using x-ray transmission and a computer algorithm to reconstruct the image.Tomography, Emission-Computed: Tomography using radioactive emissions from injected RADIONUCLIDES and computer ALGORITHMS to reconstruct an image.Tomography: Imaging methods that result in sharp images of objects located on a chosen plane and blurred images located above or below the plane.Positron-Emission Tomography: An imaging technique using compounds labelled with short-lived positron-emitting radionuclides (such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18) to measure cell metabolism. It has been useful in study of soft tissues such as CANCER; CARDIOVASCULAR SYSTEM; and brain. SINGLE-PHOTON EMISSION-COMPUTED TOMOGRAPHY is closely related to positron emission tomography, but uses isotopes with longer half-lives and resolution is lower.Tomography, Optical Coherence: An imaging method using LASERS that is used for mapping subsurface structure. When a reflective site in the sample is at the same optical path length (coherence) as the reference mirror, the detector observes interference fringes.Tomography, Spiral Computed: Computed tomography where there is continuous X-ray exposure to the patient while being transported in a spiral or helical pattern through the beam of irradiation. This provides improved three-dimensional contrast and spatial resolution compared to conventional computed tomography, where data is obtained and computed from individual sequential exposures.Tomography, Optical: Projection of near-IR light (INFRARED RAYS), in the 700-1000 nm region, across an object in parallel beams to an array of sensitive photodetectors. This is repeated at various angles and a mathematical reconstruction provides three dimensional MEDICAL IMAGING of tissues. Based on the relative transparency of tissues to this spectra, it has been used to monitor local oxygenation, brain and joints.Multidetector Computed Tomography: Types of spiral computed tomography technology in which multiple slices of data are acquired simultaneously improving the resolution over single slice acquisition technology.Cone-Beam Computed Tomography: Computed tomography modalities which use a cone or pyramid-shaped beam of radiation.Electron Microscope Tomography: A tomographic technique for obtaining 3-dimensional images with transmission electron microscopy.Tomography, X-Ray: Tomography using x-ray transmission.Fluorodeoxyglucose F18: The compound is given by intravenous injection to do POSITRON-EMISSION TOMOGRAPHY for the assessment of cerebral and myocardial glucose metabolism in various physiological or pathological states including stroke and myocardial ischemia. It is also employed for the detection of malignant tumors including those of the brain, liver, and thyroid gland. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1162)Tomography Scanners, X-Ray Computed: X-ray image-detecting devices that make a focused image of body structures lying in a predetermined plane from which more complex images are computed.Imaging, Three-Dimensional: The process of generating three-dimensional images by electronic, photographic, or other methods. For example, three-dimensional images can be generated by assembling multiple tomographic images with the aid of a computer, while photographic 3-D images (HOLOGRAPHY) can be made by exposing film to the interference pattern created when two laser light sources shine on an object.