RNA Splice Sites: Nucleotide sequences located at the ends of EXONS and recognized in pre-messenger RNA by SPLICEOSOMES. They are joined during the RNA SPLICING reaction, forming the junctions between exons.RNA Splicing: The ultimate exclusion of nonsense sequences or intervening sequences (introns) before the final RNA transcript is sent to the cytoplasm.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.RNA, Messenger: RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Alternative Splicing: A process whereby multiple RNA transcripts are generated from a single gene. Alternative splicing involves the splicing together of other possible sets of EXONS during the processing of some, but not all, transcripts of the gene. Thus a particular exon may be connected to any one of several alternative exons to form a mature RNA. The alternative forms of mature MESSENGER RNA produce PROTEIN ISOFORMS in which one part of the isoforms is common while the other parts are different.RNA Precursors: RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production.Introns: Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes.Exons: The parts of a transcript of a split GENE remaining after the INTRONS are removed. They are spliced together to become a MESSENGER RNA or other functional RNA.RNA: A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed)RNA, Viral: Ribonucleic acid that makes up the genetic material of viruses.RNA, Small Nuclear: Short chains of RNA (100-300 nucleotides long) that are abundant in the nucleus and usually complexed with proteins in snRNPs (RIBONUCLEOPROTEINS, SMALL NUCLEAR). Many function in the processing of messenger RNA precursors. Others, the snoRNAs (RNA, SMALL NUCLEOLAR), are involved with the processing of ribosomal RNA precursors.RNA, Small Interfering: Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.Spliceosomes: Organelles in which the splicing and excision reactions that remove introns from precursor messenger RNA molecules occur. One component of a spliceosome is five small nuclear RNA molecules (U1, U2, U4, U5, U6) that, working in conjunction with proteins, help to fold pieces of RNA into the right shapes and later splice them into the message.Ribonucleoprotein, U1 Small Nuclear: A nuclear RNA-protein complex that plays a role in RNA processing. In the nucleoplasm, the U1 snRNP along with other small nuclear ribonucleoproteins (U2, U4-U6, and U5) assemble into SPLICEOSOMES that remove introns from pre-mRNA by splicing. The U1 snRNA forms base pairs with conserved sequence motifs at the 5'-splice site and recognizes both the 5'- and 3'-splice sites and may have a fundamental role in aligning the two sites for the splicing reaction.RNA Editing: A process that changes the nucleotide sequence of mRNA from that of the DNA template encoding it. Some major classes of RNA editing are as follows: 1, the conversion of cytosine to uracil in mRNA; 2, the addition of variable number of guanines at pre-determined sites; and 3, the addition and deletion of uracils, templated by guide-RNAs (RNA, GUIDE).Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.RNA, Ribosomal: The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed)RNA-Binding Proteins: Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA.RNA, Fungal: Ribonucleic acid in fungi having regulatory and catalytic roles as well as involvement in protein synthesis.Ribonucleoproteins: Complexes of RNA-binding proteins with ribonucleic acids (RNA).RNA, Bacterial: Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis.HeLa Cells: The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.Ribonucleoproteins, Small Nuclear: Highly conserved nuclear RNA-protein complexes that function in RNA processing in the nucleus, including pre-mRNA splicing and pre-mRNA 3'-end processing in the nucleoplasm, and pre-rRNA processing in the nucleolus (see RIBONUCLEOPROTEINS, SMALL NUCLEOLAR).Nucleic Acid Conformation: The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape.RNA, Catalytic: RNA that has catalytic activity. The catalytic RNA sequence folds to form a complex surface that can function as an enzyme in reactions with itself and other molecules. It may function even in the absence of protein. There are numerous examples of RNA species that are acted upon by catalytic RNA, however the scope of this enzyme class is not limited to a particular type of substrate.Ribonucleoprotein, U5 Small Nuclear: A nuclear RNA-protein complex that plays a role in RNA processing. In the nucleoplasm, the U5 snRNP along with U4-U6 snRNP preassemble into a single 25S particle that binds to the U1 and U2 snRNPs and the substrate to form SPLICEOSOMES.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.RNA Interference: A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.DNA-Directed RNA Polymerases: Enzymes that catalyze DNA template-directed extension of the 3'-end of an RNA strand one nucleotide at a time. They can initiate a chain de novo. In eukaryotes, three forms of the enzyme have been distinguished on the basis of sensitivity to alpha-amanitin, and the type of RNA synthesized. (From Enzyme Nomenclature, 1992).Ribonucleoprotein, U2 Small Nuclear: A nuclear RNA-protein complex that plays a role in RNA processing. In the nucleoplasm, the U2 snRNP along with other small nuclear ribonucleoproteins (U1, U4-U6, and U5) assemble into SPLICEOSOMES that remove introns from pre-mRNA by splicing. The U2 snRNA forms base pairs with conserved sequence motifs at the branch point, which associates with a heat- and RNAase-sensitive factor in an early step of splicing.RNA Processing, Post-Transcriptional: Post-transcriptional biological modification of messenger, transfer, or ribosomal RNAs or their precursors. It includes cleavage, methylation, thiolation, isopentenylation, pseudouridine formation, conformational changes, and association with ribosomal protein.RNA Viruses: Viruses whose genetic material is RNA.Protein Isoforms: Different forms of a protein that may be produced from different GENES, or from the same gene by ALTERNATIVE SPLICING.RNA, Double-Stranded: RNA consisting of two strands as opposed to the more prevalent single-stranded RNA. Most of the double-stranded segments are formed from transcription of DNA by intramolecular base-pairing of inverted complementary sequences separated by a single-stranded loop. Some double-stranded segments of RNA are normal in all organisms.DNA Mutational Analysis: Biochemical identification of mutational changes in a nucleotide sequence.Nucleic Acid Precursors: Use for nucleic acid precursors in general or for which there is no specific heading.Heterogeneous-Nuclear Ribonucleoprotein Group A-B: A class of closely related heterogeneous-nuclear ribonucleoproteins of approximately 34-40 kDa in size. Although they are generally found in the nucleoplasm, they also shuttle between the nucleus and the cytoplasm. Members of this class have been found to have a role in mRNA transport, telomere biogenesis and RNA SPLICING.RNA Helicases: A family of proteins that promote unwinding of RNA during splicing and translation.Sequence Analysis, RNA: A multistage process that includes cloning, physical mapping, subcloning, sequencing, and information analysis of an RNA SEQUENCE.Transcription, Genetic: The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.Heterogeneous-Nuclear Ribonucleoprotein Group F-H: A group of closely-related heterogeneous-nuclear ribonucleoproteins that are involved in pre-mRNA splicing.Ribonucleoprotein, U4-U6 Small Nuclear: A nuclear RNA-protein complex that plays a role in RNA processing. In the nucleoplasm, the U4-U6 snRNP along with the U5 snRNP preassemble into a single 25S particle that binds to the U1 and U2 snRNPs and the substrate to form mature SPLICEOSOMES. There is also evidence for the existence of individual U4 or U6 snRNPs in addition to their organization as a U4-U6 snRNP.RNA Stability: The extent to which an RNA molecule retains its structural integrity and resists degradation by RNASE, and base-catalyzed HYDROLYSIS, under changing in vivo or in vitro conditions.RNA Polymerase II: A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC, Antisense: RNA molecules which hybridize to complementary sequences in either RNA or DNA altering the function of the latter. Endogenous antisense RNAs function as regulators of gene expression by a variety of mechanisms. Synthetic antisense RNAs are used to effect the functioning of specific genes for investigative or therapeutic purposes.Point Mutation: A mutation caused by the substitution of one nucleotide for another. This results in the DNA molecule having a change in a single base pair.Polymerase Chain Reaction: In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.Heterogeneous-Nuclear Ribonucleoproteins: A family of ribonucleoproteins that were originally found as proteins bound to nascent RNA transcripts in the form of ribonucleoprotein particles. Although considered ribonucleoproteins they are primarily classified by their protein component. They are involved in a variety of processes such as packaging of RNA and RNA TRANSPORT within the nucleus. A subset of heterogeneous-nuclear ribonucleoproteins are involved in additional functions such as nucleocytoplasmic transport (ACTIVE TRANSPORT, CELL NUCLEUS) of RNA and mRNA stability in the CYTOPLASM.RNA Folding: The processes of RNA tertiary structure formation.Nuclear Proteins: Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.Cell Line: Established cell cultures that have the potential to propagate indefinitely.Binding Sites: The parts of a macromolecule that directly participate in its specific combination with another molecule.RNA Caps: Nucleic acid structures found on the 5' end of eukaryotic cellular and viral messenger RNA and some heterogeneous nuclear RNAs. These structures, which are positively charged, protect the above specified RNAs at their termini against attack by phosphatases and other nucleases and promote mRNA function at the level of initiation of translation. Analogs of the RNA caps (RNA CAP ANALOGS), which lack the positive charge, inhibit the initiation of protein synthesis.RNA, Plant: Ribonucleic acid in plants having regulatory and catalytic roles as well as involvement in protein synthesis.Models, Genetic: Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.RNA, Transfer: The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains.RNA, Protozoan: Ribonucleic acid in protozoa having regulatory and catalytic roles as well as involvement in protein synthesis.DNA, Complementary: Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe.DNA Primers: Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.Sequence Homology, Nucleic Acid: The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function.Consensus Sequence: A theoretical representative nucleotide or amino acid sequence in which each nucleotide or amino acid is the one which occurs most frequently at that site in the different sequences which occur in nature. The phrase also refers to an actual sequence which approximates the theoretical consensus. A known CONSERVED SEQUENCE set is represented by a consensus sequence. Commonly observed supersecondary protein structures (AMINO ACID MOTIFS) are often formed by conserved sequences.DEAD-box RNA Helicases: A large family of RNA helicases that share a common protein motif with the single letter amino acid sequence D-E-A-D (Asp-Glu-Ala-Asp). In addition to RNA helicase activity, members of the DEAD-box family participate in other aspects of RNA metabolism and regulation of RNA function.Pedigree: The record of descent or ancestry, particularly of a particular condition or trait, indicating individual family members, their relationships, and their status with respect to the trait or condition.Reverse Transcriptase Polymerase Chain Reaction: A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.Globins: A superfamily of proteins containing the globin fold which is composed of 6-8 alpha helices arranged in a characterstic HEME enclosing structure.DNA: A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).5' Untranslated Regions: The sequence at the 5' end of the messenger RNA that does not code for product. This sequence contains the ribosome binding site and other transcription and translation regulating sequences.RNA, Untranslated: RNA which does not code for protein but has some enzymatic, structural or regulatory function. Although ribosomal RNA (RNA, RIBOSOMAL) and transfer RNA (RNA, TRANSFER) are also untranslated RNAs they are not included in this scope.Transfection: The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.Sequence Deletion: Deletion of sequences of nucleic acids from the genetic material of an individual.Plasmids: Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.Sequence Analysis, DNA: A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.Cell Nucleus: Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)Conserved Sequence: A sequence of amino acids in a polypeptide or of nucleotides in DNA or RNA that is similar across multiple species. A known set of conserved sequences is represented by a CONSENSUS SEQUENCE. AMINO ACID MOTIFS are often composed of conserved sequences.Trans-Splicing: The joining of RNA from two different genes. One type of trans-splicing is the "spliced leader" type (primarily found in protozoans such as trypanosomes and in lower invertebrates such as nematodes) which results in the addition of a capped, noncoding, spliced leader sequence to the 5' end of mRNAs. Another type of trans-splicing is the "discontinuous group II introns" type (found in plant/algal chloroplasts and plant mitochondria) which results in the joining of two independently transcribed coding sequences. Both are mechanistically similar to conventional nuclear pre-mRNA cis-splicing. Mammalian cells are also capable of trans-splicing.Frameshift Mutation: A type of mutation in which a number of NUCLEOTIDES deleted from or inserted into a protein coding sequence is not divisible by three, thereby causing an alteration in the READING FRAMES of the entire coding sequence downstream of the mutation. These mutations may be induced by certain types of MUTAGENS or may occur spontaneously.RNA Ligase (ATP): An enzyme that catalyzes the conversion of linear RNA to a circular form by the transfer of the 5'-phosphate to the 3'-hydroxyl terminus. It also catalyzes the covalent joining of two polyribonucleotides in phosphodiester linkage. EC, Molecular: The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.RNA, Neoplasm: RNA present in neoplastic tissue.Genes: A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms.Protein Binding: The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.Regulatory Sequences, Ribonucleic Acid: Sequences within RNA that regulate the processing, stability (RNA STABILITY) or translation (TRANSLATION, GENETIC) of RNA.Silencer Elements, Transcriptional: Nucleic acid sequences that are involved in the negative regulation of GENETIC TRANSCRIPTION by chromatin silencing.Base Pairing: Pairing of purine and pyrimidine bases by HYDROGEN BONDING in double-stranded DNA or RNA.RNA, Spliced Leader: The small RNAs which provide spliced leader sequences, SL1, SL2, SL3, SL4 and SL5 (short sequences which are joined to the 5' ends of pre-mRNAs by TRANS-SPLICING). They are found primarily in primitive eukaryotes (protozoans and nematodes).RNA, Heterogeneous Nuclear: Nuclear nonribosomal RNA larger than about 1000 nucleotides, the mass of which is rapidly synthesized and degraded within the cell nucleus. Some heterogeneous nuclear RNA may be a precursor to mRNA. However, the great bulk of total hnRNA hybridizes with nuclear DNA rather than with mRNA.Regulatory Sequences, Nucleic Acid: Nucleic acid sequences involved in regulating the expression of genes.Poly A: A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties.Codon, Nonsense: An amino acid-specifying codon that has been converted to a stop codon (CODON, TERMINATOR) by mutation. Its occurance is abnormal causing premature termination of protein translation and results in production of truncated and non-functional proteins. A nonsense mutation is one that converts an amino acid-specific codon to a stop codon.Ribonuclease H: A ribonuclease that specifically cleaves the RNA moiety of RNA:DNA hybrids. It has been isolated from a wide variety of prokaryotic and eukaryotic organisms as well as RETROVIRUSES.Single-Strand Specific DNA and RNA Endonucleases: Enzymes that catalyze the endonucleolytic cleavage of single-stranded regions of DNA or RNA molecules while leaving the double-stranded regions intact. They are particularly useful in the laboratory for producing "blunt-ended" DNA molecules from DNA with single-stranded ends and for sensitive GENETIC TECHNIQUES such as NUCLEASE PROTECTION ASSAYS that involve the detection of single-stranded DNA and RNA.Saccharomyces cerevisiae: A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.Ficusin: A naturally occurring furocoumarin, found in PSORALEA. After photoactivation with UV radiation, it binds DNA via single and double-stranded cross-linking.Base Composition: The relative amounts of the PURINES and PYRIMIDINES in a nucleic acid.Sequence Homology, Amino Acid: The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.Enhancer Elements, Genetic: Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter.Gene Expression Regulation: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.Phenotype: The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.Protein Structure, Tertiary: The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.Alleles: Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product.Sequence Alignment: The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.Oligoribonucleotides: A group of ribonucleotides (up to 12) in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.Cross-Linking Reagents: Reagents with two reactive groups, usually at opposite ends of the molecule, that are capable of reacting with and thereby forming bridges between side chains of amino acids in proteins; the locations of naturally reactive areas within proteins can thereby be identified; may also be used for other macromolecules, like glycoproteins, nucleic acids, or other.Blotting, Northern: Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.Protein Biosynthesis: The biosynthesis of PEPTIDES and PROTEINS on RIBOSOMES, directed by MESSENGER RNA, via TRANSFER RNA that is charged with standard proteinogenic AMINO ACIDS.Databases, Nucleic Acid: Databases containing information about NUCLEIC ACIDS such as BASE SEQUENCE; SNPS; NUCLEIC ACID CONFORMATION; and other properties. Information about the DNA fragments kept in a GENE LIBRARY or GENOMIC LIBRARY is often maintained in DNA databases.3' Untranslated Regions: The sequence at the 3' end of messenger RNA that does not code for product. This region contains transcription and translation regulating sequences.Nucleic Acid Hybridization: Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503)RNA Polymerase III: A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure where it transcribes DNA into RNA. It has specific requirements for cations and salt and has shown an intermediate sensitivity to alpha-amanitin in comparison to RNA polymerase I and II. EC Mapping: Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA.Computational Biology: A field of biology concerned with the development of techniques for the collection and manipulation of biological data, and the use of such data to make biological discoveries or predictions. This field encompasses all computational methods and theories for solving biological problems including manipulation of models and datasets.Promoter Regions, Genetic: DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.Gene Expression Regulation, Viral: Any of the processes by which cytoplasmic factors influence the differential control of gene action in viruses.Mutation, Missense: A mutation in which a codon is mutated to one directing the incorporation of a different amino acid. This substitution may result in an inactive or unstable product. (From A Dictionary of Genetics, King & Stansfield, 5th ed)Open Reading Frames: A sequence of successive nucleotide triplets that are read as CODONS specifying AMINO ACIDS and begin with an INITIATOR CODON and end with a stop codon (CODON, TERMINATOR).Polypyrimidine Tract-Binding Protein: A RNA-binding protein that binds to polypyriminidine rich regions in the INTRONS of messenger RNAs. Polypyrimidine tract-binding protein may be involved in regulating the ALTERNATIVE SPLICING of mRNAs since its presence on an intronic RNA region that is upstream of an EXON inhibits the splicing of the exon into the final mRNA product.Mutagenesis, Site-Directed: Genetically engineered MUTAGENESIS at a specific site in the DNA molecule that introduces a base substitution, or an insertion or deletion.RNA Polymerase I: A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. The enzyme functions in the nucleolar structure and transcribes DNA into RNA. It has different requirements for cations and salts than RNA polymerase II and III and is not inhibited by alpha-amanitin. EC, Genetic: Macromolecular molds for the synthesis of complementary macromolecules, as in DNA REPLICATION; GENETIC TRANSCRIPTION of DNA to RNA, and GENETIC TRANSLATION of RNA into POLYPEPTIDES.RNA, Nuclear: RNA molecules found in the nucleus either associated with chromosomes or in the nucleoplasm.Gene Products, rev: Trans-acting nuclear proteins whose functional expression are required for retroviral replication. Specifically, the rev gene products are required for processing and translation of the gag and env mRNAs, and thus rev regulates the expression of the viral structural proteins. rev can also regulate viral regulatory proteins. A cis-acting antirepression sequence (CAR) in env, also known as the rev-responsive element (RRE), is responsive to the rev gene product. rev is short for regulator of virion.beta-Crystallin A Chain: The acidic subunit of beta-crystallins.Transcription Factors: Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.Oligonucleotides: Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed)Heterozygote: An individual having different alleles at one or more loci regarding a specific character.Evolution, Molecular: The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations.RNA, Guide: Small kinetoplastid mitochondrial RNA that plays a major role in RNA EDITING. These molecules form perfect hybrids with edited mRNA sequences and possess nucleotide sequences at their 5'-ends that are complementary to the sequences of the mRNA's immediately downstream of the pre-edited regions.Endoribonucleases: A family of enzymes that catalyze the endonucleolytic cleavage of RNA. It includes EC 3.1.26.-, EC 3.1.27.-, EC 3.1.30.-, and EC 3.1.31.-.Genetic Variation: Genotypic differences observed among individuals in a population.RNA, Ribosomal, 28S: Constituent of the 60S subunit of eukaryotic ribosomes. 28S rRNA is involved in the initiation of polypeptide synthesis in eukaryotes.Mutagenesis: Process of generating a genetic MUTATION. It may occur spontaneously or be induced by MUTAGENS.Gene Expression: The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.rev Gene Products, Human Immunodeficiency Virus: Proteins encoded by the REV GENES of the HUMAN IMMUNODEFICIENCY VIRUS.Tetrahymena: A genus of ciliate protozoa commonly used in genetic, cytological, and other research.Expressed Sequence Tags: Partial cDNA (DNA, COMPLEMENTARY) sequences that are unique to the cDNAs from which they were derived.Genes, rev: DNA sequences that form the coding region for a protein that regulates the expression of the viral structural and regulatory proteins in human immunodeficiency virus (HIV). rev is short for regulator of virion.Virus Replication: The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle.Cells, Cultured: Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.Chromosome Mapping: Any method used for determining the location of and relative distances between genes on a chromosome.