Loading...
Neocortex: The largest portion of the CEREBRAL CORTEX in which the NEURONS are arranged in six layers in the mammalian brain: molecular, external granular, external pyramidal, internal granular, internal pyramidal and multiform layers.Cerebral Cortex: The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulchi. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions.Neurons: The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.Pyramidal Cells: Projection neurons in the CEREBRAL CORTEX and the HIPPOCAMPUS. Pyramidal cells have a pyramid-shaped soma with the apex and an apical dendrite pointed toward the pial surface and other dendrites and an axon emerging from the base. The axons may have local collaterals but also project outside their cortical region.Thalamus: Paired bodies containing mostly GRAY MATTER and forming part of the lateral wall of the THIRD VENTRICLE of the brain.Somatosensory Cortex: Area of the parietal lobe concerned with receiving sensations such as movement, pain, pressure, position, temperature, touch, and vibration. It lies posterior to the central sulcus.Interneurons: Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions.Telencephalon: The anterior subdivision of the embryonic PROSENCEPHALON or the corresponding part of the adult prosencephalon that includes the cerebrum and associated structures.Vibrissae: Stiff hairs projecting from the face around the nose of most mammals, acting as touch receptors.Neural Pathways: Neural tracts connecting one part of the nervous system with another.Synapses: Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions.Dendrites: Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS.Nerve Net: A meshlike structure composed of interconnecting nerve cells that are separated at the synaptic junction or joined to one another by cytoplasmic processes. In invertebrates, for example, the nerve net allows nerve impulses to spread over a wide area of the net because synapses can pass information in any direction.Animals, Newborn: Refers to animals in the period of time just after birth.Hippocampus: A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation.Neural Inhibition: The function of opposing or restraining the excitation of neurons or their target excitable cells.Brain: The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.Parvalbumins: Low molecular weight, calcium binding muscle proteins. Their physiological function is possibly related to the contractile process.gamma-Aminobutyric Acid: The most common inhibitory neurotransmitter in the central nervous system.Neurogenesis: Formation of NEURONS which involves the differentiation and division of STEM CELLS in which one or both of the daughter cells become neurons.Calbindin 2: A calbindin protein that is differentially expressed in distinct populations of NEURONS throughout the vertebrate and invertebrate NERVOUS SYSTEM, and modulates intrinsic neuronal excitability and influences LONG-TERM POTENTIATION. It is also found in LUNG, TESTIS, OVARY, KIDNEY, and BREAST, and is expressed in many tumor types found in these tissues. It is often used as an immunohistochemical marker for MESOTHELIOMA.S100 Calcium Binding Protein G: A calbindin protein found in many mammalian tissues, including the UTERUS, PLACENTA, BONE, PITUITARY GLAND, and KIDNEYS. In intestinal ENTEROCYTES it mediates intracellular calcium transport from apical to basolateral membranes via calcium binding at two EF-HAND MOTIFS. Expression is regulated in some tissues by VITAMIN D.Rats, Sprague-Dawley: A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.Action Potentials: Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli.Excitatory Postsynaptic Potentials: Depolarization of membrane potentials at the SYNAPTIC MEMBRANES of target neurons during neurotransmission. Excitatory postsynaptic potentials can singly or in summation reach the trigger threshold for ACTION POTENTIALS.Nerve Tissue ProteinsSynaptic Transmission: The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES.Calbindins: Calcium-binding proteins that are found in DISTAL KIDNEY TUBULES, INTESTINES, BRAIN, and other tissues where they bind, buffer and transport cytoplasmic calcium. Calbindins possess a variable number of EF-HAND MOTIFS which contain calcium-binding sites. Some isoforms are regulated by VITAMIN D.Axons: Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body.Neuronal Plasticity: The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations.Neuropil: A dense intricate feltwork of interwoven fine glial processes, fibrils, synaptic terminals, axons, and dendrites interspersed among the nerve cells in the gray matter of the central nervous system.Prosencephalon: The anterior of the three primitive cerebral vesicles of the embryonic brain arising from the NEURAL TUBE. It subdivides to form DIENCEPHALON and TELENCEPHALON. (Stedmans Medical Dictionary, 27th ed)Electric Stimulation: Use of electric potential or currents to elicit biological responses.Neuroglia: The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear.Models, Neurological: Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment.Epilepsy: A disorder characterized by recurrent episodes of paroxysmal brain dysfunction due to a sudden, disorderly, and excessive neuronal discharge. Epilepsy classification systems are generally based upon: (1) clinical features of the seizure episodes (e.g., motor seizure), (2) etiology (e.g., post-traumatic), (3) anatomic site of seizure origin (e.g., frontal lobe seizure), (4) tendency to spread to other structures in the brain, and (5) temporal patterns (e.g., nocturnal epilepsy). (From Adams et al., Principles of Neurology, 6th ed, p313)Gene Expression Regulation, Developmental: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.Neural Stem Cells: Self-renewing cells that generate the main phenotypes of the nervous system in both the embryo and adult. Neural stem cells are precursors to both NEURONS and NEUROGLIA.Electroporation: A technique in which electric pulses of intensity in kilovolts per centimeter and of microsecond-to-millisecond duration cause a temporary loss of the semipermeability of CELL MEMBRANES, thus leading to ion leakage, escape of metabolites, and increased uptake by cells of drugs, molecular probes, and DNA.Patch-Clamp Techniques: An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used.Mice, Transgenic: Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.Cell Count: The number of CELLS of a specific kind, usually measured per unit volume or area of sample.Monodelphis: A genus of short-tailed OPOSSUMS in the family Didelphidae found in South American, chiefly Brazil. They are opossums least well-adapted to arboreal life.Rats, Wistar: A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain.Receptors, GABA-A: Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop.Electroencephalography: Recording of electric currents developed in the brain by means of electrodes applied to the scalp, to the surface of the brain, or placed within the substance of the brain.Receptors, N-Methyl-D-Aspartate: A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity.Afferent Pathways: Nerve structures through which impulses are conducted from a peripheral part toward a nerve center.Immunohistochemistry: Histochemical localization of immunoreactive substances using labeled antibodies as reagents.Temporal Lobe: Lower lateral part of the cerebral hemisphere responsible for auditory, olfactory, and semantic processing. It is located inferior to the lateral fissure and anterior to the OCCIPITAL LOBE.Mice, Inbred C57BLElectrophysiology: The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.Cell Movement: The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell.Inhibitory Postsynaptic Potentials: Hyperpolarization of membrane potentials at the SYNAPTIC MEMBRANES of target neurons during NEUROTRANSMISSION. They are local changes which diminish responsiveness to excitatory signals.Nuclear Receptor Subfamily 1, Group F, Member 2: An orphan nuclear receptor that is expressed at high levels in neuronal tissues, the RETINA; EPIDIDYMIS; and VAS DEFERENS. The receptor is believed to play a role in regulating a variety of functions including the processing of sensory information, the differentiation of PHOTORECEPTOR CELLS and the CIRCADIAN RHYTHM.Brain Mapping: Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures.Optics and Photonics: A specialized field of physics and engineering involved in studying the behavior and properties of light and the technology of analyzing, generating, transmitting, and manipulating ELECTROMAGNETIC RADIATION in the visible, infrared, and ultraviolet range.Organ Culture Techniques: A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1)Brain Tissue Transplantation: Transference of brain tissue, either from a fetus or from a born individual, between individuals of the same species or between individuals of different species.Excitatory Amino Acid Antagonists: Drugs that bind to but do not activate excitatory amino acid receptors, thereby blocking the actions of agonists.Cortical Synchronization: EEG phase synchronization of the cortical brain region (CEREBRAL CORTEX).Visual Cortex: Area of the OCCIPITAL LOBE concerned with the processing of visual information relayed via VISUAL PATHWAYS.Evoked Potentials: Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported.