Maltose: A dextrodisaccharide from malt and starch. It is used as a sweetening agent and fermentable intermediate in brewing. (Grant & Hackh's Chemical Dictionary, 5th ed)Maltose-Binding Proteins: Periplasmic proteins that bind MALTOSE and maltodextrin. They take part in the maltose transport system of BACTERIA.alpha-Glucosidases: Enzymes that catalyze the exohydrolysis of 1,4-alpha-glucosidic linkages with release of alpha-glucose. Deficiency of alpha-1,4-glucosidase may cause GLYCOGEN STORAGE DISEASE TYPE II.Periplasmic Binding Proteins: Periplasmic proteins that scavenge or sense diverse nutrients. In the bacterial environment they usually couple to transporters or chemotaxis receptors on the inner bacterial membrane.DextrinsMonosaccharide Transport Proteins: A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES.Trisaccharides: Oligosaccharides containing three monosaccharide units linked by glycosidic bonds.Glycogen Debranching Enzyme System: 1,4-alpha-D-Glucan-1,4-alpha-D-glucan 4-alpha-D-glucosyltransferase/dextrin 6 alpha-D-glucanohydrolase. An enzyme system having both 4-alpha-glucanotransferase (EC 2.4.1.25) and amylo-1,6-glucosidase (EC 3.2.1.33) activities. As a transferase it transfers a segment of a 1,4-alpha-D-glucan to a new 4-position in an acceptor, which may be glucose or another 1,4-alpha-D-glucan. As a glucosidase it catalyzes the endohydrolysis of 1,6-alpha-D-glucoside linkages at points of branching in chains of 1,4-linked alpha-D-glucose residues. Amylo-1,6-glucosidase activity is deficient in glycogen storage disease type III.Isomaltose: A disaccharide consisting of two glucose units in an alpha (1-6) glycosidic linkage.TrehaloseStarch: Any of a group of polysaccharides of the general formula (C6-H10-O5)n, composed of a long-chain polymer of glucose in the form of amylose and amylopectin. It is the chief storage form of energy reserve (carbohydrates) in plants.ATP-Binding Cassette Transporters: A family of MEMBRANE TRANSPORT PROTEINS that require ATP hydrolysis for the transport of substrates across membranes. The protein family derives its name from the ATP-binding domain found on the protein.Glucosidases: Enzymes that hydrolyze O-glucosyl-compounds. (Enzyme Nomenclature, 1992) EC 3.2.1.-.Escherichia coli Proteins: Proteins obtained from ESCHERICHIA COLI.Disaccharides: Oligosaccharides containing two monosaccharide units linked by a glycosidic bond.Escherichia coli: A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.beta-Amylase: An enzyme that catalyzes the hydrolysis of 1,4-alpha-glycosidic linkages in starch, glycogen, and related polysaccharides and oligosaccharides so as to remove successive beta-maltose units from the non-reducing ends of the chains. EC 3.2.1.2.Sucrose: A nonreducing disaccharide composed of GLUCOSE and FRUCTOSE linked via their anomeric carbons. It is obtained commercially from SUGARCANE, sugar beet (BETA VULGARIS), and other plants and used extensively as a food and a sweetener.Carbohydrate Metabolism: Cellular processes in biosynthesis (anabolism) and degradation (catabolism) of CARBOHYDRATES.Glucose: A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement.Glucosyltransferases: Enzymes that catalyze the transfer of glucose from a nucleoside diphosphate glucose to an acceptor molecule which is frequently another carbohydrate. EC 2.4.1.-.alpha-Amylases: Enzymes that catalyze the endohydrolysis of 1,4-alpha-glycosidic linkages in STARCH; GLYCOGEN; and related POLYSACCHARIDES and OLIGOSACCHARIDES containing 3 or more 1,4-alpha-linked D-glucose units.Acarbose: An inhibitor of ALPHA-GLUCOSIDASES that retards the digestion and absorption of DIETARY CARBOHYDRATES in the SMALL INTESTINE.Carrier Proteins: Transport proteins that carry specific substances in the blood or across cell membranes.Biological Transport: The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.Lactose: A disaccharide of GLUCOSE and GALACTOSE in human and cow milk. It is used in pharmacy for tablets, in medicine as a nutrient, and in industry.Fermentation: Anaerobic degradation of GLUCOSE or other organic nutrients to gain energy in the form of ATP. End products vary depending on organisms, substrates, and enzymatic pathways. Common fermentation products include ETHANOL and LACTIC ACID.Glucan 1,4-alpha-Glucosidase: An enzyme that catalyzes the hydrolysis of terminal 1,4-linked alpha-D-glucose residues successively from non-reducing ends of polysaccharide chains with the release of beta-glucose. It is also able to hydrolyze 1,6-alpha-glucosidic bonds when the next bond in sequence is 1,4.Amylose: An unbranched glucan in starch.Bacterial Proteins: Proteins found in any species of bacterium.Cellobiose: A disaccharide consisting of two glucose units in beta (1-4) glycosidic linkage. Obtained from the partial hydrolysis of cellulose.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Phosphoenolpyruvate Sugar Phosphotransferase System: The bacterial sugar phosphotransferase system (PTS) that catalyzes the transfer of the phosphoryl group from phosphoenolpyruvate to its sugar substrates (the PTS sugars) concomitant with the translocation of these sugars across the bacterial membrane. The phosphorylation of a given sugar requires four proteins, two general proteins, Enzyme I and HPr and a pair of sugar-specific proteins designated as the Enzyme II complex. The PTS has also been implicated in the induction of synthesis of some catabolic enzyme systems required for the utilization of sugars that are not substrates of the PTS as well as the regulation of the activity of ADENYLYL CYCLASES. EC 2.7.1.-.Saccharomyces: A genus of ascomycetous fungi of the family Saccharomycetaceae, order SACCHAROMYCETALES.PolysaccharidesThiogalactosides: Galactosides in which the oxygen atom linking the sugar and aglycone is replaced by a sulfur atom.Amylases: A group of amylolytic enzymes that cleave starch, glycogen, and related alpha-1,4-glucans. (Stedman, 25th ed) EC 3.2.1.-.GlucosidesMembrane Transport Proteins: Membrane proteins whose primary function is to facilitate the transport of molecules across a biological membrane. Included in this broad category are proteins involved in active transport (BIOLOGICAL TRANSPORT, ACTIVE), facilitated transport and ION CHANNELS.Carbohydrates: The largest class of organic compounds, including STARCH; GLYCOGEN; CELLULOSE; POLYSACCHARIDES; and simple MONOSACCHARIDES. Carbohydrates are composed of carbon, hydrogen, and oxygen in a ratio of Cn(H2O)n.Galactose: An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood.Kinetics: The rate dynamics in chemical or physical systems.