Histones: Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each.Histone Deacetylases: Deacetylases that remove N-acetyl groups from amino side chains of the amino acids of HISTONES. The enzyme family can be divided into at least three structurally-defined subclasses. Class I and class II deacetylases utilize a zinc-dependent mechanism. The sirtuin histone deacetylases belong to class III and are NAD-dependent enzymes.Histone Deacetylase Inhibitors: Compounds that inhibit HISTONE DEACETYLASES. This class of drugs may influence gene expression by increasing the level of acetylated HISTONES in specific CHROMATIN domains.Histone Acetyltransferases: Enzymes that catalyze acyl group transfer from ACETYL-CoA to HISTONES forming CoA and acetyl-histones.Acetylation: Formation of an acetyl derivative. (Stedman, 25th ed)Histone Deacetylase 1: A histone deacetylase subtype that is found along with HISTONE DEACETYLASE 2; RETINOBLASTOMA-BINDING PROTEIN 4; and RETINOBLASTOMA-BINDING PROTEIN 7 as core components of histone deacetylase complexes.Chromatin: The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell.Histone Code: The specific patterns of changes made to HISTONES, that are involved in assembly, maintenance, and alteration of chromatin structural states (such as EUCHROMATIN and HETEROCHROMATIN). The changes are made by various HISTONE MODIFICATION PROCESSES that include ACETYLATION; METHYLATION; PHOSPHORYLATION; and UBIQUITINATION.Histone Deacetylase 2: A histone deacetylase subtype that is found along with HISTONE DEACETYLASE 1; RETINOBLASTOMA-BINDING PROTEIN 4; and RETINOBLASTOMA-BINDING PROTEIN 7 as core components of histone deacetylase complexes.Histone Demethylases: Enzymes that catalyse the removal of methyl groups from LYSINE or ARGININE residues found on HISTONES. Many histone demethylases generally function through an oxidoreductive mechanism.Histone Chaperones: Proteins involved in the assembly and disassembly of HISTONES into NUCLEOSOMES.Nucleosomes: The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4.Methylation: Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed)Hydroxamic Acids: A class of weak acids with the general formula R-CONHOH.Histone-Lysine N-Methyltransferase: An enzyme that catalyzes the methylation of the epsilon-amino group of lysine residues in proteins to yield epsilon mono-, di-, and trimethyllysine. EC 2.1.1.43.Epigenesis, Genetic: A genetic process by which the adult organism is realized via mechanisms that lead to the restriction in the possible fates of cells, eventually leading to their differentiated state. Mechanisms involved cause heritable changes to cells without changes to DNA sequence such as DNA METHYLATION; HISTONE modification; DNA REPLICATION TIMING; NUCLEOSOME positioning; and heterochromatization which result in selective gene expression or repression.Chromatin Assembly and Disassembly: The mechanisms effecting establishment, maintenance, and modification of that specific physical conformation of CHROMATIN determining the transcriptional accessibility or inaccessibility of the DNA.Jumonji Domain-Containing Histone Demethylases: A family of histone demethylases that share a conserved Jumonji C domain. The enzymes function via an iron-dependent dioxygenase mechanism that couples the conversion of 2-oxoglutarate to succinate to the hydroxylation of N-methyl groups.Acetyltransferases: Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1.Transcription, Genetic: The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.Chromatin Immunoprecipitation: A technique for identifying specific DNA sequences that are bound, in vivo, to proteins of interest. It involves formaldehyde fixation of CHROMATIN to crosslink the DNA-BINDING PROTEINS to the DNA. After shearing the DNA into small fragments, specific DNA-protein complexes are isolated by immunoprecipitation with protein-specific ANTIBODIES. Then, the DNA isolated from the complex can be identified by PCR amplification and sequencing.Protein Methyltransferases: Enzymes that catalyze the methylation of amino acids after their incorporation into a polypeptide chain. S-Adenosyl-L-methionine acts as the methylating agent. EC 2.1.1.p300-CBP Transcription Factors: A family of histone acetyltransferases that is structurally-related to CREB-BINDING PROTEIN and to E1A-ASSOCIATED P300 PROTEIN. They function as transcriptional coactivators by bridging between DNA-binding TRANSCRIPTION FACTORS and the basal transcription machinery. They also modify transcription factors and CHROMATIN through ACETYLATION.Repressor Proteins: Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release.Gene Silencing: Interruption or suppression of the expression of a gene at transcriptional or translational levels.Chromosomal Proteins, Non-Histone: Nucleoproteins, which in contrast to HISTONES, are acid insoluble. They are involved in chromosomal functions; e.g. they bind selectively to DNA, stimulate transcription resulting in tissue-specific RNA synthesis and undergo specific changes in response to various hormones or phytomitogens.Nuclear Proteins: Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.Protein Binding: The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.Saccharomyces cerevisiae Proteins: Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.Heterochromatin: The portion of chromosome material that remains condensed and is transcriptionally inactive during INTERPHASE.Transcription Factors: Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Protein Processing, Post-Translational: Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility.DNA Methylation: Addition of methyl groups to DNA. DNA methyltransferases (DNA methylases) perform this reaction using S-ADENOSYLMETHIONINE as the methyl group donor.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.DNA-Binding Proteins: Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.Butyrates: Derivatives of BUTYRIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the carboxypropane structure.HeLa Cells: The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.Gene Expression Regulation: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.DNA: A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).Saccharomyces cerevisiae: A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.Sin3 Histone Deacetylase and Corepressor Complex: A multisubunit enzyme complex that regulates GENETIC TRANSCRIPTION by deacetylating the HISTONE residues of NUCLEOSOMES.Protamine Kinase: An aspect of protein kinase (EC 2.7.1.37) in which serine residues in protamines and histones are phosphorylated in the presence of ATP.Cell Line: Established cell cultures that have the potential to propagate indefinitely.Euchromatin: Chromosome regions that are loosely packaged and more accessible to RNA polymerases than HETEROCHROMATIN. These regions also stain differentially in CHROMOSOME BANDING preparations.Micrococcal Nuclease: An enzyme that catalyzes the endonucleolytic cleavage to 3'-phosphomononucleotide and 3'-phospholigonucleotide end-products. It can cause hydrolysis of double- or single-stranded DNA or RNA. (From Enzyme Nomenclature, 1992) EC 3.1.31.1.Nucleosome Assembly Protein 1: A histone chaperone that facilitates nucleosome assembly by mediating the formation of the histone octamer and its transfer to DNA.Protein Structure, Tertiary: The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.Enzyme Inhibitors: Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.Valproic Acid: A fatty acid with anticonvulsant properties used in the treatment of epilepsy. The mechanisms of its therapeutic actions are not well understood. It may act by increasing GAMMA-AMINOBUTYRIC ACID levels in the brain or by altering the properties of voltage dependent sodium channels.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Methyltransferases: A subclass of enzymes of the transferase class that catalyze the transfer of a methyl group from one compound to another. (Dorland, 28th ed) EC 2.1.1.Cell Cycle Proteins: Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.Cell Line, Tumor: A cell line derived from cultured tumor cells.Cell Cycle: The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Phosphorylation: The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.Gene Expression Regulation, Fungal: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi.Oxidoreductases, N-DemethylatingTranscriptional Activation: Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes.Polycomb Repressive Complex 2: A multisubunit polycomb protein complex that catalyzes the METHYLATION of chromosomal HISTONE H3. It works in conjunction with POLYCOMB REPRESSIVE COMPLEX 1 to effect EPIGENETIC REPRESSION.Retinoblastoma-Binding Protein 4: A retinoblastoma-binding protein that is involved in CHROMATIN REMODELING, histone deacetylation, and repression of GENETIC TRANSCRIPTION. Although initially discovered as a retinoblastoma binding protein it has an affinity for core HISTONES and is a subunit of chromatin assembly factor-1 and polycomb repressive complex 2.Binding Sites: The parts of a macromolecule that directly participate in its specific combination with another molecule.RNA, Messenger: RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.Epigenomics: The systematic study of the global gene expression changes due to EPIGENETIC PROCESSES and not due to DNA base sequence changes.CREB-Binding Protein: A member of the p300-CBP transcription factor family that was initially identified as a binding partner for CAMP RESPONSE ELEMENT-BINDING PROTEIN. Mutations in CREB-binding protein are associated with RUBINSTEIN-TAYBI SYNDROME.Butyric Acid: A four carbon acid, CH3CH2CH2COOH, with an unpleasant odor that occurs in butter and animal fat as the glycerol ester.RNA Polymerase II: A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6.Chickens: Common name for the species Gallus gallus, the domestic fowl, in the family Phasianidae, order GALLIFORMES. It is descended from the red jungle fowl of SOUTHEAST ASIA.Sirtuins: A homologous family of regulatory enzymes that are structurally related to the protein silent mating type information regulator 2 (Sir2) found in Saccharomyces cerevisiae. Sirtuins contain a central catalytic core region which binds NAD. Several of the sirtuins utilize NAD to deacetylate proteins such as HISTONES and are categorized as GROUP III HISTONE DEACETYLASES. Several other sirtuin members utilize NAD to transfer ADP-RIBOSE to proteins and are categorized as MONO ADP-RIBOSE TRANSFERASES, while a third group of sirtuins appears to have both deacetylase and ADP ribose transferase activities.Depsipeptides: Compounds consisting of chains of AMINO ACIDS alternating with CARBOXYLIC ACIDS via ester and amide linkages. They are commonly cyclized.Centromere: The clear constricted portion of the chromosome at which the chromatids are joined and by which the chromosome is attached to the spindle during cell division.Sirtuin 2: A sirtuin family member found primarily in the CYTOPLASM. It is a multifunctional enzyme that contains a NAD-dependent deacetylase activity that is specific for HISTONES and a mono-ADP-ribosyltransferase activity.Nucleoplasmins: A family of histone molecular chaperones that play roles in sperm CHROMATIN decondensation and CHROMATIN ASSEMBLY in fertilized eggs. They were originally discovered in XENOPUS egg extracts as histone-binding factors that mediate nucleosome formation in vitro.Protein-Arginine N-Methyltransferases: Enzymes that catalyze the methylation of arginine residues of proteins to yield N-mono- and N,N-dimethylarginine. This enzyme is found in many organs, primarily brain and spleen.DNA Replication: The process by which a DNA molecule is duplicated.E1A-Associated p300 Protein: A member of the p300-CBP transcription factors that was originally identified as a binding partner for ADENOVIRUS E1A PROTEINS.Cells, Cultured: Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.Blotting, Western: Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.Polycomb-Group Proteins: A family of proteins that play a role in CHROMATIN REMODELING. They are best known for silencing HOX GENES and the regulation of EPIGENETIC PROCESSES.Mitosis: A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species.Sea Urchins: Somewhat flattened, globular echinoderms, having thin, brittle shells of calcareous plates. They are useful models for studying FERTILIZATION and EMBRYO DEVELOPMENT.Protamines: A group of simple proteins that yield basic amino acids on hydrolysis and that occur combined with nucleic acid in the sperm of fish. Protamines contain very few kinds of amino acids. Protamine sulfate combines with heparin to form a stable inactive complex; it is used to neutralize the anticoagulant action of heparin in the treatment of heparin overdose. (From Merck Index, 11th ed; Martindale, The Extra Pharmacopoeia, 30th ed, p692)DNA Damage: Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS.Molecular Chaperones: A family of cellular proteins that mediate the correct assembly or disassembly of polypeptides and their associated ligands. Although they take part in the assembly process, molecular chaperones are not components of the final structures.Drosophila Proteins: Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development.Chromosomes: In a prokaryotic cell or in the nucleus of a eukaryotic cell, a structure consisting of or containing DNA which carries the genetic information essential to the cell. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)RNA Interference: A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process.Chromatin Assembly Factor-1: A histone chaperone protein that plays a role in the deposition of NUCLEOSOMES on newly synthesized DNA. It is comprised of three different subunits of 48, 60, and 150 kDa molecular size. The 48 kDa subunit, RETINOBLASTOMA-BINDING PROTEIN 4, is also a component of several other protein complexes involved in chromatin remodeling.Substrate Specificity: A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.Trans-Activators: Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.Electrophoresis, Polyacrylamide Gel: Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.Ribonucleoprotein, U7 Small Nuclear: This ribonucleoprotein particle, composed of U7 snRNA, Sm core protein, and U7 snRNP-specific proteins, is involved in the 3'end processing of histone premessenger RNAs.Models, Biological: Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.Cell Differentiation: Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.Ubiquitination: The act of ligating UBIQUITINS to PROTEINS to form ubiquitin-protein ligase complexes to label proteins for transport to the PROTEASOME ENDOPEPTIDASE COMPLEX where proteolysis occurs.Multiprotein Complexes: Macromolecular complexes formed from the association of defined protein subunits.Azacitidine: A pyrimidine analogue that inhibits DNA methyltransferase, impairing DNA methylation. It is also an antimetabolite of cytidine, incorporated primarily into RNA. Azacytidine has been used as an antineoplastic agent.Gene Expression Regulation, Developmental: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.Sequence Homology, Amino Acid: The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.Immunoprecipitation: The aggregation of soluble ANTIGENS with ANTIBODIES, alone or with antibody binding factors such as ANTI-ANTIBODIES or STAPHYLOCOCCAL PROTEIN A, into complexes large enough to fall out of solution.Models, Molecular: Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.Reverse Transcriptase Polymerase Chain Reaction: A variation of the PCR technique in which cDNA is made from RNA via reverse transcription. The resultant cDNA is then amplified using standard PCR protocols.Drosophila melanogaster: A species of fruit fly much used in genetics because of the large size of its chromosomes.DNA (Cytosine-5-)-Methyltransferase: An enzyme that catalyzes the transfer of a methyl group from S-ADENOSYLMETHIONINE to the 5-position of CYTOSINE residues in DNA.mRNA Cleavage and Polyadenylation Factors: Factors that are involved in directing the cleavage and POLYADENYLATION of the of MESSENGER RNA near the site of the RNA 3' POLYADENYLATION SIGNALS.Protein Kinases: A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein.Kinetics: The rate dynamics in chemical or physical systems.S Phase: Phase of the CELL CYCLE following G1 and preceding G2 when the entire DNA content of the nucleus is replicated. It is achieved by bidirectional replication at multiple sites along each chromosome.Retinoblastoma-Binding Protein 7: A retinoblastoma-binding protein that has an affinity for core HISTONES. It is found as a subunit of protein complexes that are in involved in the enzymatic modification of histones including the Mi2 and Sin3 histone deacetylase complexes and the polycomb repressive complex 2.Mi-2 Nucleosome Remodeling and Deacetylase Complex: A enzyme complex involved in the remodeling of NUCLEOSOMES. The complex is comprised of at least seven subunits and includes both histone deacetylase and ATPase activities.Thymus Gland: A single, unpaired primary lymphoid organ situated in the MEDIASTINUM, extending superiorly into the neck to the lower edge of the THYROID GLAND and inferiorly to the fourth costal cartilage. It is necessary for normal development of immunologic function early in life. By puberty, it begins to involute and much of the tissue is replaced by fat.RNA, Small Interfering: Small double-stranded, non-protein coding RNAs (21-31 nucleotides) involved in GENE SILENCING functions, especially RNA INTERFERENCE (RNAi). Endogenously, siRNAs are generated from dsRNAs (RNA, DOUBLE-STRANDED) by the same ribonuclease, Dicer, that generates miRNAs (MICRORNAS). The perfect match of the siRNAs' antisense strand to their target RNAs mediates RNAi by siRNA-guided RNA cleavage. siRNAs fall into different classes including trans-acting siRNA (tasiRNA), repeat-associated RNA (rasiRNA), small-scan RNA (scnRNA), and Piwi protein-interacting RNA (piRNA) and have different specific gene silencing functions.Precipitin Tests: Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate.CpG Islands: Areas of increased density of the dinucleotide sequence cytosine--phosphate diester--guanine. They form stretches of DNA several hundred to several thousand base pairs long. In humans there are about 45,000 CpG islands, mostly found at the 5' ends of genes. They are unmethylated except for those on the inactive X chromosome and some associated with imprinted genes.High Mobility Group Proteins: A family of low-molecular weight, non-histone proteins found in chromatin.Apoptosis: One of the mechanisms by which CELL DEATH occurs (compare with NECROSIS and AUTOPHAGOCYTOSIS). Apoptosis is the mechanism responsible for the physiological deletion of cells and appears to be intrinsically programmed. It is characterized by distinctive morphologic changes in the nucleus and cytoplasm, chromatin cleavage at regularly spaced sites, and the endonucleolytic cleavage of genomic DNA; (DNA FRAGMENTATION); at internucleosomal sites. This mode of cell death serves as a balance to mitosis in regulating the size of animal tissues and in mediating pathologic processes associated with tumor growth.Anacardic Acids: A group of 6-alkyl SALICYLIC ACIDS that are found in ANACARDIUM and known for causing CONTACT DERMATITIS.Recombinant Fusion Proteins: Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.Nucleoproteins: Proteins conjugated with nucleic acids.Cell Proliferation: All of the processes involved in increasing CELL NUMBER including CELL DIVISION.Gene Expression Regulation, Neoplastic: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in neoplastic tissue.Transfection: The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.Macromolecular Substances: Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure.Gene Deletion: A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus.Sequence Alignment: The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.Fungal Proteins: Proteins found in any species of fungus.Cattle: Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor.Models, Genetic: Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment.Drosophila: A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology.Retinoblastoma-Binding Protein 2: A retinoblastoma binding protein that is also a member of the Jumonji-domain histone demethylases. It has demethylation activity towards specific LYSINE residues found on HISTONE H3.Erythrocytes: Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN.Genes, Reporter: Genes whose expression is easily detectable and therefore used to study promoter activity at many positions in a target genome. In recombinant DNA technology, these genes may be attached to a promoter region of interest.Sirtuin 1: A sirtuin family member found primarily in the CELL NUCLEUS. It is an NAD-dependent deacetylase with specificity towards HISTONES and a variety of proteins involved in gene regulation.Poly Adenosine Diphosphate Ribose: A polynucleotide formed from the ADP-RIBOSE moiety of nicotinamide-adenine dinucleotide (NAD) by POLY(ADP-RIBOSE) POLYMERASES.Gene Knockdown Techniques: The artificial induction of GENE SILENCING by the use of RNA INTERFERENCE to reduce the expression of a specific gene. It includes the use of DOUBLE-STRANDED RNA, such as SMALL INTERFERING RNA and RNA containing HAIRPIN LOOP SEQUENCE, and ANTI-SENSE OLIGONUCLEOTIDES.Gene Expression: The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.Gene Expression Profiling: The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell.Silent Information Regulator Proteins, Saccharomyces cerevisiae: A set of nuclear proteins in SACCHAROMYCES CEREVISIAE that are required for the transcriptional repression of the silent mating type loci. They mediate the formation of silenced CHROMATIN and repress both transcription and recombination at other loci as well. They are comprised of 4 non-homologous, interacting proteins, Sir1p, Sir2p, Sir3p, and Sir4p. Sir2p, an NAD-dependent HISTONE DEACETYLASE, is the founding member of the family of SIRTUINS.Plasmids: Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.RNA 3' End Processing: The steps that generate the 3' ends of mature RNA molecules. For most mRNAs (RNA, MESSENGER), 3' end processing referred to as POLYADENYLATION includes the addition of POLY A.Embryonic Stem Cells: Cells derived from the BLASTOCYST INNER CELL MASS which forms before implantation in the uterine wall. They retain the ability to divide, proliferate and provide progenitor cells that can differentiate into specialized cells.DNA Primers: Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques.HEK293 Cells: A cell line generated from human embryonic kidney cells that were transformed with human adenovirus type 5.Protein-Serine-Threonine Kinases: A group of enzymes that catalyzes the phosphorylation of serine or threonine residues in proteins, with ATP or other nucleotides as phosphate donors.Recombinant Proteins: Proteins prepared by recombinant DNA technology.Xenopus laevis: The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals.Schizosaccharomyces pombe Proteins: Proteins obtained from the species Schizosaccharomyces pombe. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.Oocytes: Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM).Signal Transduction: The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.Schizosaccharomyces: A genus of ascomycetous fungi of the family Schizosaccharomycetaceae, order Schizosaccharomycetales.Down-Regulation: A negative regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins.Epigenetic Repression: The turning off of GENETIC TRANSCRIPTION in certain regions of CHROMATIN without changes in the DNA sequence. Typically epigenetic repression is a way that developmental changes are programmed at the cellular level.DNA Repair: The reconstruction of a continuous two-stranded DNA molecule without mismatch from a molecule which contained damaged regions. The major repair mechanisms are excision repair, in which defective regions in one strand are excised and resynthesized using the complementary base pairing information in the intact strand; photoreactivation repair, in which the lethal and mutagenic effects of ultraviolet light are eliminated; and post-replication repair, in which the primary lesions are not repaired, but the gaps in one daughter duplex are filled in by incorporation of portions of the other (undamaged) daughter duplex. Excision repair and post-replication repair are sometimes referred to as "dark repair" because they do not require light.Myeloid-Lymphoid Leukemia Protein: Myeloid-lymphoid leukemia protein is a transcription factor that maintains high levels of HOMEOTIC GENE expression during development. The GENE for myeloid-lymphoid leukemia protein is commonly disrupted in LEUKEMIA and combines with over 40 partner genes to form FUSION ONCOGENE PROTEINS.PhenylbutyratesCloning, Molecular: The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.Interphase: The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs).Serine: A non-essential amino acid occurring in natural form as the L-isomer. It is synthesized from GLYCINE or THREONINE. It is involved in the biosynthesis of PURINES; PYRIMIDINES; and other amino acids.Homeodomain Proteins: Proteins encoded by homeobox genes (GENES, HOMEOBOX) that exhibit structural similarity to certain prokaryotic and eukaryotic DNA-binding proteins. Homeodomain proteins are involved in the control of gene expression during morphogenesis and development (GENE EXPRESSION REGULATION, DEVELOPMENTAL).Conserved Sequence: A sequence of amino acids in a polypeptide or of nucleotides in DNA or RNA that is similar across multiple species. A known set of conserved sequences is represented by a CONSENSUS SEQUENCE. AMINO ACID MOTIFS are often composed of conserved sequences.Xenopus: An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.Tumor Cells, Cultured: Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.Nucleic Acid Conformation: The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape.Nuclear Receptor Co-Repressor 1: A nuclear protein that regulates the expression of genes involved in a diverse array of processes related to metabolism and reproduction. The protein contains three nuclear receptor interaction domains and three repressor domains and is closely-related in structure to NUCLEAR RECEPTOR CO-REPRESSOR 2.Gene Expression Regulation, Enzymologic: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.Polycomb Repressive Complex 1: A multisubunit polycomb protein complex with affinity for CHROMATIN that contains methylated HISTONE H3. It contains an E3 ubiquitin ligase activity that is specific for HISTONE H2A and works in conjunction with POLYCOMB REPRESSIVE COMPLEX 2 to effect EPIGENETIC REPRESSION.Group III Histone Deacetylases: A subclass of histone deacetylases that are NAD-dependent. Several members of the SIRTUINS family are included in this subclass.Biotinidase: An enzyme which catalyzes the release of BIOTIN from biocytin. In human, defects in the enzyme are the cause of the organic acidemia MULTIPLE CARBOXYLASE DEFICIENCY or BIOTINIDASE DEFICIENCY.Nucleoside Diphosphate SugarsGenes, Fungal: The functional hereditary units of FUNGI.Protein Conformation: The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).Mice, Inbred C57BLCyclin-Dependent Kinase Inhibitor p21: A cyclin-dependent kinase inhibitor that mediates TUMOR SUPPRESSOR PROTEIN P53-dependent CELL CYCLE arrest. p21 interacts with a range of CYCLIN-DEPENDENT KINASES and associates with PROLIFERATING CELL NUCLEAR ANTIGEN and CASPASE 3.Oligonucleotide Array Sequence Analysis: Hybridization of a nucleic acid sample to a very large set of OLIGONUCLEOTIDE PROBES, which have been attached individually in columns and rows to a solid support, to determine a BASE SEQUENCE, or to detect variations in a gene sequence, GENE EXPRESSION, or for GENE MAPPING.Transcriptional Elongation Factors: Transcription factors whose primary function is to regulate the rate in which RNA is transcribed.Time Factors: Elements of limited time intervals, contributing to particular results or situations.RNA, Ribosomal, 5S: Constituent of the 50S subunit of prokaryotic ribosomes containing about 120 nucleotides and 34 proteins. It is also a constituent of the 60S subunit of eukaryotic ribosomes. 5S rRNA is involved in initiation of polypeptide synthesis.Molecular Weight: The sum of the weight of all the atoms in a molecule.Immunoblotting: Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies.Spermatozoa: Mature male germ cells derived from SPERMATIDS. As spermatids move toward the lumen of the SEMINIFEROUS TUBULES, they undergo extensive structural changes including the loss of cytoplasm, condensation of CHROMATIN into the SPERM HEAD, formation of the ACROSOME cap, the SPERM MIDPIECE and the SPERM TAIL that provides motility.Fibroblasts: Connective tissue cells which secrete an extracellular matrix rich in collagen and other macromolecules.Telomere: A terminal section of a chromosome which has a specialized structure and which is involved in chromosomal replication and stability. Its length is believed to be a few hundred base pairs.Deoxyribonuclease I: An enzyme capable of hydrolyzing highly polymerized DNA by splitting phosphodiester linkages, preferentially adjacent to a pyrimidine nucleotide. This catalyzes endonucleolytic cleavage of DNA yielding 5'-phosphodi- and oligonucleotide end-products. The enzyme has a preference for double-stranded DNA.Tetrahymena thermophila: A species of ciliate protozoa used in genetic and cytological research.Transcription Initiation Site: The first nucleotide of a transcribed DNA sequence where RNA polymerase (DNA-DIRECTED RNA POLYMERASE) begins synthesizing the RNA transcript.Phenotype: The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.Arabidopsis: A plant genus of the family BRASSICACEAE that contains ARABIDOPSIS PROTEINS and MADS DOMAIN PROTEINS. The species A. thaliana is used for experiments in classical plant genetics as well as molecular genetic studies in plant physiology, biochemistry, and development.Gene Expression Regulation, Plant: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants.Arabidopsis Proteins: Proteins that originate from plants species belonging to the genus ARABIDOPSIS. The most intensely studied species of Arabidopsis, Arabidopsis thaliana, is commonly used in laboratory experiments.Spermatogenesis: The process of germ cell development in the male from the primordial germ cells, through SPERMATOGONIA; SPERMATOCYTES; SPERMATIDS; to the mature haploid SPERMATOZOA.Meiosis: A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells.DNA Breaks, Double-Stranded: Interruptions in the sugar-phosphate backbone of DNA, across both strands adjacently.Carrier Proteins: Transport proteins that carry specific substances in the blood or across cell membranes.Antineoplastic Agents: Substances that inhibit or prevent the proliferation of NEOPLASMS.Dosage Compensation, Genetic: Genetic mechanisms that allow GENES to be expressed at a similar level irrespective of their GENE DOSAGE. This term is usually used in discussing genes that lie on the SEX CHROMOSOMES. Because the sex chromosomes are only partially homologous, there is a different copy number, i.e., dosage, of these genes in males vs. females. In DROSOPHILA, dosage compensation is accomplished by hypertranscription of genes located on the X CHROMOSOME. In mammals, dosage compensation of X chromosome genes is accomplished by random X CHROMOSOME INACTIVATION of one of the two X chromosomes in the female.Tetrahymena: A genus of ciliate protozoa commonly used in genetic, cytological, and other research.Ribosomal Protein S6 Kinases, 90-kDa: A family of ribosomal protein S6 kinases that are structurally distinguished from RIBOSOMAL PROTEIN S6 KINASES, 70-KDA by their apparent molecular size and the fact they contain two functional kinase domains. Although considered RIBOSOMAL PROTEIN S6 KINASES, members of this family are activated via the MAP KINASE SIGNALING SYSTEM and have been shown to act on a diverse array of substrates that are involved in cellular regulation such as RIBOSOMAL PROTEIN S6 and CAMP RESPONSE ELEMENT-BINDING PROTEIN.Hydroxyurea: An antineoplastic agent that inhibits DNA synthesis through the inhibition of ribonucleoside diphosphate reductase.NIH 3T3 Cells: A continuous cell line of high contact-inhibition established from NIH Swiss mouse embryo cultures. The cells are useful for DNA transfection and transformation studies. (From ATCC [Internet]. Virginia: American Type Culture Collection; c2002 [cited 2002 Sept 26]. Available from http://www.atcc.org/)Protein Interaction Domains and Motifs: Protein modules with conserved ligand-binding surfaces which mediate specific interaction functions in SIGNAL TRANSDUCTION PATHWAYS and the specific BINDING SITES of their cognate protein LIGANDS.