Proteins involved in the assembly and disassembly of HISTONES into NUCLEOSOMES.
A family of cellular proteins that mediate the correct assembly or disassembly of polypeptides and their associated ligands. Although they take part in the assembly process, molecular chaperones are not components of the final structures.
Small chromosomal proteins (approx 12-20 kD) possessing an open, unfolded structure and attached to the DNA in cell nuclei by ionic linkages. Classification into the various types (designated histone I, histone II, etc.) is based on the relative amounts of arginine and lysine in each.
A histone chaperone that facilitates nucleosome assembly by mediating the formation of the histone octamer and its transfer to DNA.
Enzymes that catalyze acyl group transfer from ACETYL-CoA to HISTONES forming CoA and acetyl-histones.
Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1.
Formation of an acetyl derivative. (Stedman, 25th ed)
The repeating structural units of chromatin, each consisting of approximately 200 base pairs of DNA wound around a protein core. This core is composed of the histones H2A, H2B, H3, and H4.
The mechanisms effecting establishment, maintenance, and modification of that specific physical conformation of CHROMATIN determining the transcriptional accessibility or inaccessibility of the DNA.
Deacetylases that remove N-acetyl groups from amino side chains of the amino acids of HISTONES. The enzyme family can be divided into at least three structurally-defined subclasses. Class I and class II deacetylases utilize a zinc-dependent mechanism. The sirtuin histone deacetylases belong to class III and are NAD-dependent enzymes.
The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell.
A histone chaperone protein that plays a role in the deposition of NUCLEOSOMES on newly synthesized DNA. It is comprised of three different subunits of 48, 60, and 150 kDa molecular size. The 48 kDa subunit, RETINOBLASTOMA-BINDING PROTEIN 4, is also a component of several other protein complexes involved in chromatin remodeling.
Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
A family of histone molecular chaperones that play roles in sperm CHROMATIN decondensation and CHROMATIN ASSEMBLY in fertilized eggs. They were originally discovered in XENOPUS egg extracts as histone-binding factors that mediate nucleosome formation in vitro.
A retinoblastoma-binding protein that is involved in CHROMATIN REMODELING, histone deacetylation, and repression of GENETIC TRANSCRIPTION. Although initially discovered as a retinoblastoma binding protein it has an affinity for core HISTONES and is a subunit of chromatin assembly factor-1 and polycomb repressive complex 2.
Proteins that control the CELL DIVISION CYCLE. This family of proteins includes a wide variety of classes, including CYCLIN-DEPENDENT KINASES, mitogen-activated kinases, CYCLINS, and PHOSPHOPROTEIN PHOSPHATASES as well as their putative substrates such as chromatin-associated proteins, CYTOSKELETAL PROTEINS, and TRANSCRIPTION FACTORS.
An enzyme that catalyzes the formation of acetylcholine from acetyl-CoA and choline. EC 2.3.1.6.
Nucleoproteins, which in contrast to HISTONES, are acid insoluble. They are involved in chromosomal functions; e.g. they bind selectively to DNA, stimulate transcription resulting in tissue-specific RNA synthesis and undergo specific changes in response to various hormones or phytomitogens.
Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus.
Compounds that inhibit HISTONE DEACETYLASES. This class of drugs may influence gene expression by increasing the level of acetylated HISTONES in specific CHROMATIN domains.
The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.
Transcription factors whose primary function is to regulate the rate in which RNA is transcribed.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION.
A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.
An enzyme that catalyzes the acetylation of chloramphenicol to yield chloramphenicol 3-acetate. Since chloramphenicol 3-acetate does not bind to bacterial ribosomes and is not an inhibitor of peptidyltransferase, the enzyme is responsible for the naturally occurring chloramphenicol resistance in bacteria. The enzyme, for which variants are known, is found in both gram-negative and gram-positive bacteria. EC 2.3.1.28.
A family of histone acetyltransferases that is structurally-related to CREB-BINDING PROTEIN and to E1A-ASSOCIATED P300 PROTEIN. They function as transcriptional coactivators by bridging between DNA-binding TRANSCRIPTION FACTORS and the basal transcription machinery. They also modify transcription factors and CHROMATIN through ACETYLATION.
Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Interruption or suppression of the expression of a gene at transcriptional or translational levels.
A retinoblastoma-binding protein that has an affinity for core HISTONES. It is found as a subunit of protein complexes that are in involved in the enzymatic modification of histones including the Mi2 and Sin3 histone deacetylase complexes and the polycomb repressive complex 2.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Addition of methyl groups. In histo-chemistry methylation is used to esterify carboxyl groups and remove sulfate groups by treating tissue sections with hot methanol in the presence of hydrochloric acid. (From Stedman, 25th ed)
The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.
The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for VIRUS CULTIVATION and antitumor drug screening assays.
Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in fungi.
An enzyme that catalyzes the formation of O-acetylcarnitine from acetyl-CoA plus carnitine. EC 2.3.1.7.
DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes.
A class of MOLECULAR CHAPERONES found in both prokaryotes and in several compartments of eukaryotic cells. These proteins can interact with polypeptides during a variety of assembly processes in such a way as to prevent the formation of nonfunctional structures.
A family of low-molecular weight, non-histone proteins found in chromatin.
A histone deacetylase subtype that is found along with HISTONE DEACETYLASE 2; RETINOBLASTOMA-BINDING PROTEIN 4; and RETINOBLASTOMA-BINDING PROTEIN 7 as core components of histone deacetylase complexes.
Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.
A genetic process by which the adult organism is realized via mechanisms that lead to the restriction in the possible fates of cells, eventually leading to their differentiated state. Mechanisms involved cause heritable changes to cells without changes to DNA sequence such as DNA METHYLATION; HISTONE modification; DNA REPLICATION TIMING; NUCLEOSOME positioning; and heterochromatization which result in selective gene expression or repression.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
Established cell cultures that have the potential to propagate indefinitely.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
An enzyme that catalyzes the conversion of L-SERINE to COENZYME A and O-acetyl-L-serine, using ACETYL-COA as a donor.
An N-terminal acetyltransferase subtype that consists of the Naa10p catalytic subunit and the Naa15p auxiliary subunit. The structure of this enzyme is conserved between lower and higher eukaryotes. It has specificity for N-terminal SERINE; ALANINE; THREONINE; GLYCINE; VALINE; and CYSTINE residues and acts on nascent peptide chains after the removal of the initiator METHIONINE by METHIONYL AMINOPEPTIDASES.
Protein modules with conserved ligand-binding surfaces which mediate specific interaction functions in SIGNAL TRANSDUCTION PATHWAYS and the specific BINDING SITES of their cognate protein LIGANDS.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A histone deacetylase subtype that is found along with HISTONE DEACETYLASE 1; RETINOBLASTOMA-BINDING PROTEIN 4; and RETINOBLASTOMA-BINDING PROTEIN 7 as core components of histone deacetylase complexes.
An N-terminal acetyltransferase subtype that consists of the Naa50p catalytic subunit, and the Naa10p and Naa15p auxiliary subunits. It has specificity for the N-terminal METHIONINE of peptides where the next amino acid in the chain is hydrophobic.
A class of MOLECULAR CHAPERONES whose members act in the mechanism of SIGNAL TRANSDUCTION by STEROID RECEPTORS.
A class of weak acids with the general formula R-CONHOH.
Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions.
A family of heat-shock proteins that contain a 70 amino-acid consensus sequence known as the J domain. The J domain of HSP40 heat shock proteins interacts with HSP70 HEAT-SHOCK PROTEINS. HSP40 heat-shock proteins play a role in regulating the ADENOSINE TRIPHOSPHATASES activity of HSP70 heat-shock proteins.
The portion of chromosome material that remains condensed and is transcriptionally inactive during INTERPHASE.
Macromolecular complexes formed from the association of defined protein subunits.
The specific patterns of changes made to HISTONES, that are involved in assembly, maintenance, and alteration of chromatin structural states (such as EUCHROMATIN and HETEROCHROMATIN). The changes are made by various HISTONE MODIFICATION PROCESSES that include ACETYLATION; METHYLATION; PHOSPHORYLATION; and UBIQUITINATION.
The process by which a DNA molecule is duplicated.
An essential amino acid. It is often added to animal feed.
An enzyme that catalyzes the acetyltransferase reaction using ACETYL CoA as an acetyl donor and dihydrolipoamide as acceptor to produce COENZYME A (CoA) and S-acetyldihydrolipoamide. It forms the (E2) subunit of the PYRUVATE DEHYDROGENASE COMPLEX.
A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).
Enzymes that catalyse the removal of methyl groups from LYSINE or ARGININE residues found on HISTONES. Many histone demethylases generally function through an oxidoreductive mechanism.
Processes involved in the formation of TERTIARY PROTEIN STRUCTURE.
A technique for identifying specific DNA sequences that are bound, in vivo, to proteins of interest. It involves formaldehyde fixation of CHROMATIN to crosslink the DNA-BINDING PROTEINS to the DNA. After shearing the DNA into small fragments, specific DNA-protein complexes are isolated by immunoprecipitation with protein-specific ANTIBODIES. Then, the DNA isolated from the complex can be identified by PCR amplification and sequencing.
Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release.
A DNA-dependent RNA polymerase present in bacterial, plant, and animal cells. It functions in the nucleoplasmic structure and transcribes DNA into RNA. It has different requirements for cations and salt than RNA polymerase I and is strongly inhibited by alpha-amanitin. EC 2.7.7.6.
Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility.
An enzyme that catalyzes the methylation of the epsilon-amino group of lysine residues in proteins to yield epsilon mono-, di-, and trimethyllysine. EC 2.1.1.43.
Processes that stimulate the GENETIC TRANSCRIPTION of a gene or set of genes.
Acetyl CoA participates in the biosynthesis of fatty acids and sterols, in the oxidation of fatty acids and in the metabolism of many amino acids. It also acts as a biological acetylating agent.
Proteins that originate from insect species belonging to the genus DROSOPHILA. The proteins from the most intensely studied species of Drosophila, DROSOPHILA MELANOGASTER, are the subject of much interest in the area of MORPHOGENESIS and development.
Maintenance of TELOMERE length. During DNA REPLICATION, chromosome ends loose some of their telomere sequence (TELOMERE SHORTENING.) Various cellular mechanism are involved in repairing, extending, and recapping the telomere ends.
The process by which two molecules of the same chemical composition form a condensation product or polymer.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
Proteins prepared by recombinant DNA technology.
The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)
Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS.
A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA.
A member of the p300-CBP transcription factor family that was initially identified as a binding partner for CAMP RESPONSE ELEMENT-BINDING PROTEIN. Mutations in CREB-binding protein are associated with RUBINSTEIN-TAYBI SYNDROME.
Phase of the CELL CYCLE following G1 and preceding G2 when the entire DNA content of the nucleus is replicated. It is achieved by bidirectional replication at multiple sites along each chromosome.
Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.
The uptake of naked or purified DNA by CELLS, usually meaning the process as it occurs in eukaryotic cells. It is analogous to bacterial transformation (TRANSFORMATION, BACTERIAL) and both are routinely employed in GENE TRANSFER TECHNIQUES.
The assembly of the QUATERNARY PROTEIN STRUCTURE of multimeric proteins (MULTIPROTEIN COMPLEXES) from their composite PROTEIN SUBUNITS.
Proteins obtained from the species Schizosaccharomyces pombe. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.
A genus of ascomycetous fungi of the family Schizosaccharomycetaceae, order Schizosaccharomycetales.
A genetic rearrangement through loss of segments of DNA or RNA, bringing sequences which are normally separated into close proximity. This deletion may be detected using cytogenetic techniques and can also be inferred from the phenotype, indicating a deletion at one specific locus.
The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.
Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.
A member of the p300-CBP transcription factors that was originally identified as a binding partner for ADENOVIRUS E1A PROTEINS.
Methods for determining interaction between PROTEINS.
The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
An increased tendency of the GENOME to acquire MUTATIONS when various processes involved in maintaining and replicating the genome are dysfunctional.
The reconstruction of a continuous two-stranded DNA molecule without mismatch from a molecule which contained damaged regions. The major repair mechanisms are excision repair, in which defective regions in one strand are excised and resynthesized using the complementary base pairing information in the intact strand; photoreactivation repair, in which the lethal and mutagenic effects of ultraviolet light are eliminated; and post-replication repair, in which the primary lesions are not repaired, but the gaps in one daughter duplex are filled in by incorporation of portions of the other (undamaged) daughter duplex. Excision repair and post-replication repair are sometimes referred to as "dark repair" because they do not require light.
Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
A species of fruit fly much used in genetics because of the large size of its chromosomes.
A family of multisubunit protein complexes that form into large cylindrical structures which bind to and encapsulate non-native proteins. Chaperonins utilize the energy of ATP hydrolysis to enhance the efficiency of PROTEIN FOLDING reactions and thereby help proteins reach their functional conformation. The family of chaperonins is split into GROUP I CHAPERONINS, and GROUP II CHAPERONINS, with each group having its own repertoire of protein subunits and subcellular preferences.
Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.
The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals.
Endogenous tissue constituents that have the ability to interact with AUTOANTIBODIES and cause an immune response.
A lectin found in ENDOPLASMIC RETICULUM membranes that binds to specific N-linked OLIGOSACCHARIDES found on newly synthesized proteins. It may play role in PROTEIN FOLDING or retention and degradation of misfolded proteins in the endoplasmic reticulum.
The rate dynamics in chemical or physical systems.
A constitutively expressed subfamily of the HSP70 heat-shock proteins. They preferentially bind and release hydrophobic peptides by an ATP-dependent process and are involved in post-translational PROTEIN TRANSLOCATION.
A family of histone demethylases that share a conserved Jumonji C domain. The enzymes function via an iron-dependent dioxygenase mechanism that couples the conversion of 2-oxoglutarate to succinate to the hydroxylation of N-methyl groups.
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.
A terminal section of a chromosome which has a specialized structure and which is involved in chromosomal replication and stability. Its length is believed to be a few hundred base pairs.
Proteins obtained from ESCHERICHIA COLI.
A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology.
Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.
A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed)
Enzymes that catalyze the hydrolysis of ester bonds within RNA. EC 3.1.-.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups.
Enzymes that catalyze the transfer of an acetyl group, usually from ACETYL COENZYME A, to the N-terminus of a peptide chain.
A multienzyme complex responsible for the formation of ACETYL COENZYME A from pyruvate. The enzyme components are PYRUVATE DEHYDROGENASE (LIPOAMIDE); dihydrolipoamide acetyltransferase; and LIPOAMIDE DEHYDROGENASE. Pyruvate dehydrogenase complex is subject to three types of control: inhibited by acetyl-CoA and NADH; influenced by the energy state of the cell; and inhibited when a specific serine residue in the pyruvate decarboxylase is phosphorylated by ATP. PYRUVATE DEHYDROGENASE (LIPOAMIDE)-PHOSPHATASE catalyzes reactivation of the complex. (From Concise Encyclopedia Biochemistry and Molecular Biology, 3rd ed)
Proteins found in any species of bacterium.
An N-terminal acetyltransferase subtype that consists of the Naa20p catalytic subunit and the Naa25p auxiliary subunit. The structure of this enzyme is conserved between YEASTS and HUMAN. It has specificity for the N-terminal METHIONINE of peptides where the next amino acid in the chain is either ASPARTATE; GLUTAMATE; ASPARAGINE; OR GLUTAMINE.
A biogenic polyamine formed from spermidine. It is found in a wide variety of organisms and tissues and is an essential growth factor in some bacteria. It is found as a polycation at all pH values. Spermine is associated with nucleic acids, particularly in viruses, and is thought to stabilize the helical structure.
Nucleic acid sequences involved in regulating the expression of genes.
Coenzyme A is an essential coenzyme that plays a crucial role in various metabolic processes, particularly in the transfer and activation of acetyl groups in important biochemical reactions such as fatty acid synthesis and oxidation, and the citric acid cycle.
Enzymes that catalyze the methylation of amino acids after their incorporation into a polypeptide chain. S-Adenosyl-L-methionine acts as the methylating agent. EC 2.1.1.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in enzyme synthesis.
Transport proteins that carry specific substances in the blood or across cell membranes.
A multifunctional protein that is found primarily within membrane-bound organelles. In the ENDOPLASMIC RETICULUM it binds to specific N-linked oligosaccharides found on newly-synthesized proteins and functions as a MOLECULAR CHAPERONE that may play a role in PROTEIN FOLDING or retention and degradation of misfolded proteins. In addition calreticulin is a major storage form for CALCIUM and functions as a calcium-signaling molecule that can regulate intracellular calcium HOMEOSTASIS.
Genes whose expression is easily detectable and therefore used to study promoter activity at many positions in a target genome. In recombinant DNA technology, these genes may be attached to a promoter region of interest.
Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction.
The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain).
Electrophoresis in which a polyacrylamide gel is used as the diffusion medium.
A group of 6-alkyl SALICYLIC ACIDS that are found in ANACARDIUM and known for causing CONTACT DERMATITIS.
The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.
A cell line derived from cultured tumor cells.
Vesicular amine transporter proteins that transport the neurotransmitter ACETYLCHOLINE into small SECRETORY VESICLES. Proteins of this family contain 12 transmembrane domains and exchange vesicular PROTONS for cytoplasmic acetylcholine.
Polyamines are organic compounds with more than one amino group, involved in various biological processes such as cell growth, differentiation, and apoptosis, and found to be increased in certain diseases including cancer.
Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes.
A polyamine formed from putrescine. It is found in almost all tissues in association with nucleic acids. It is found as a cation at all pH values, and is thought to help stabilize some membranes and nucleic acid structures. It is a precursor of spermine.
Proteins found in any species of fungus.
LACTAMS forming compounds with a ring size of approximately 1-3 dozen atoms.
Cis-acting DNA sequences which can increase transcription of genes. Enhancers can usually function in either orientation and at various distances from a promoter.
Phosphoproteins are proteins that have been post-translationally modified with the addition of a phosphate group, usually on serine, threonine or tyrosine residues, which can play a role in their regulation, function, interaction with other molecules, and localization within the cell.
Nerve fibers liberating acetylcholine at the synapse after an impulse.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA.
A group I chaperonin protein that forms the barrel-like structure of the chaperonin complex. It is an oligomeric protein with a distinctive structure of fourteen subunits, arranged in two rings of seven subunits each. The protein was originally studied in BACTERIA where it is commonly referred to as GroEL protein.
Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely.
The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety.
Benzene rings which contain two ketone moieties in any position. They can be substituted in any position except at the ketone groups.