Trans-Cinnamate 4-Monooxygenase: A member of the P450 superfamily, this enzyme catalyzes the first oxidative step of the phenylpropanoid pathway in higher PLANTS by transforming trans-cinnamate into p-coumarate.Oxygenases: Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules.Mixed Function Oxygenases: Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation.Kynurenine 3-Monooxygenase: An NADPH-dependent flavin monooxygenase that plays a key role in the catabolism of TRYPTOPHAN by catalyzing the HYDROXYLATION of KYNURENINE to 3-hydroxykynurenine. It was formerly characterized as EC 1.14.1.2 and EC 1.99.1.5.Methylococcaceae: A family of gram-negative, aerobic bacteria utilizing only one-carbon organic compounds and isolated from in soil and water.Methylococcus capsulatus: A species of METHYLOCOCCUS which forms capsules and is capable of autotrophic carbon dioxide fixation. (From Bergey's Manual of Determinative Bacteriology, 9th ed)ButanesCytochrome P-450 Enzyme System: A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism.Methylosinus trichosporium: A species of METHYLOSINUS which is capable of degrading trichloroethylene and other organic pollutants.Camphor 5-Monooxygenase: A soluble cytochrome P-450 enzyme that catalyzes camphor monooxygenation in the presence of putidaredoxin, putidaredoxin reductase, and molecular oxygen. This enzyme, encoded by the CAMC gene also known as CYP101, has been crystallized from bacteria and the structure is well defined. Under anaerobic conditions, this enzyme reduces the polyhalogenated compounds bound at the camphor-binding site.Nitrosomonas: A genus of gram-negative, ellipsoidal or rod-shaped bacteria whose major source of energy and reducing power is from the oxidation of ammonia to nitrite. Its species occur in soils, oceans, lakes, rivers, and sewage disposal systems.Flavin-Adenine Dinucleotide: A condensation product of riboflavin and adenosine diphosphate. The coenzyme of various aerobic dehydrogenases, e.g., D-amino acid oxidase and L-amino acid oxidase. (Lehninger, Principles of Biochemistry, 1982, p972)