Tomography Scanners, X-Ray Computed: X-ray image-detecting devices that make a focused image of body structures lying in a predetermined plane from which more complex images are computed.Tomography, X-Ray Computed: Tomography using x-ray transmission and a computer algorithm to reconstruct the image.X-Rays: Penetrating electromagnetic radiation emitted when the inner orbital electrons of an atom are excited and release radiant energy. X-ray wavelengths range from 1 pm to 10 nm. Hard X-rays are the higher energy, shorter wavelength X-rays. Soft x-rays or Grenz rays are less energetic and longer in wavelength. The short wavelength end of the X-ray spectrum overlaps the GAMMA RAYS wavelength range. The distinction between gamma rays and X-rays is based on their radiation source.Positron-Emission Tomography: An imaging technique using compounds labelled with short-lived positron-emitting radionuclides (such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18) to measure cell metabolism. It has been useful in study of soft tissues such as CANCER; CARDIOVASCULAR SYSTEM; and brain. SINGLE-PHOTON EMISSION-COMPUTED TOMOGRAPHY is closely related to positron emission tomography, but uses isotopes with longer half-lives and resolution is lower.Tomography: Imaging methods that result in sharp images of objects located on a chosen plane and blurred images located above or below the plane.X-Ray Diffraction: The scattering of x-rays by matter, especially crystals, with accompanying variation in intensity due to interference effects. Analysis of the crystal structure of materials is performed by passing x-rays through them and registering the diffraction image of the rays (CRYSTALLOGRAPHY, X-RAY). (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)Tomography, Optical Coherence: An imaging method using LASERS that is used for mapping subsurface structure. When a reflective site in the sample is at the same optical path length (coherence) as the reference mirror, the detector observes interference fringes.Tomography, Emission-Computed: Tomography using radioactive emissions from injected RADIONUCLIDES and computer ALGORITHMS to reconstruct an image.Phantoms, Imaging: Devices or objects in various imaging techniques used to visualize or enhance visualization by simulating conditions encountered in the procedure. Phantoms are used very often in procedures employing or measuring x-irradiation or radioactive material to evaluate performance. Phantoms often have properties similar to human tissue. Water demonstrates absorbing properties similar to normal tissue, hence water-filled phantoms are used to map radiation levels. Phantoms are used also as teaching aids to simulate real conditions with x-ray or ultrasonic machines. (From Iturralde, Dictionary and Handbook of Nuclear Medicine and Clinical Imaging, 1990)Crystallography, X-Ray: The study of crystal structure using X-RAY DIFFRACTION techniques. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)Tomography, Spiral Computed: Computed tomography where there is continuous X-ray exposure to the patient while being transported in a spiral or helical pattern through the beam of irradiation. This provides improved three-dimensional contrast and spatial resolution compared to conventional computed tomography, where data is obtained and computed from individual sequential exposures.Tomography, Optical: Projection of near-IR light (INFRARED RAYS), in the 700-1000 nm region, across an object in parallel beams to an array of sensitive photodetectors. This is repeated at various angles and a mathematical reconstruction provides three dimensional MEDICAL IMAGING of tissues. Based on the relative transparency of tissues to this spectra, it has been used to monitor local oxygenation, brain and joints.Cone-Beam Computed Tomography: Computed tomography modalities which use a cone or pyramid-shaped beam of radiation.Multidetector Computed Tomography: Types of spiral computed tomography technology in which multiple slices of data are acquired simultaneously improving the resolution over single slice acquisition technology.Imaging, Three-Dimensional: The process of generating three-dimensional images by electronic, photographic, or other methods. For example, three-dimensional images can be generated by assembling multiple tomographic images with the aid of a computer, while photographic 3-D images (HOLOGRAPHY) can be made by exposing film to the interference pattern created when two laser light sources shine on an object.Magnetic Resonance Imaging: Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques.Image Processing, Computer-Assisted: A technique of inputting two-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer.Tomography, Emission-Computed, Single-Photon: A method of computed tomography that uses radionuclides which emit a single photon of a given energy. The camera is rotated 180 or 360 degrees around the patient to capture images at multiple positions along the arc. The computer is then used to reconstruct the transaxial, sagittal, and coronal images from the 3-dimensional distribution of radionuclides in the organ. The advantages of SPECT are that it can be used to observe biochemical and physiological processes as well as size and volume of the organ. The disadvantage is that, unlike positron-emission tomography where the positron-electron annihilation results in the emission of 2 photons at 180 degrees from each other, SPECT requires physical collimation to line up the photons, which results in the loss of many available photons and hence degrades the image.Reproducibility of Results: The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results.Electron Microscope Tomography: A tomographic technique for obtaining 3-dimensional images with transmission electron microscopy.Equipment Design: Methods of creating machines and devices.Sensitivity and Specificity: Binary classification measures to assess test results. Sensitivity or recall rate is the proportion of true positives. Specificity is the probability of correctly determining the absence of a condition. (From Last, Dictionary of Epidemiology, 2d ed)Fluorodeoxyglucose F18: The compound is given by intravenous injection to do POSITRON-EMISSION TOMOGRAPHY for the assessment of cerebral and myocardial glucose metabolism in various physiological or pathological states including stroke and myocardial ischemia. It is also employed for the detection of malignant tumors including those of the brain, liver, and thyroid gland. (From Martindale, The Extra Pharmacopoeia, 30th ed, p1162)Tomography, X-Ray: Tomography using x-ray transmission.Equipment Failure Analysis: The evaluation of incidents involving the loss of function of a device. These evaluations are used for a variety of purposes such as to determine the failure rates, the causes of failures, costs of failures, and the reliability and maintainability of devices.Image Enhancement: Improvement of the quality of a picture by various techniques, including computer processing, digital filtering, echocardiographic techniques, light and ultrastructural MICROSCOPY, fluorescence spectrometry and microscopy, scintigraphy, and in vitro image processing at the molecular level.Radiographic Image Interpretation, Computer-Assisted: Computer systems or networks designed to provide radiographic interpretive information.Radiation Dosage: The amount of radiation energy that is deposited in a unit mass of material, such as tissues of plants or animal. In RADIOTHERAPY, radiation dosage is expressed in gray units (Gy). In RADIOLOGIC HEALTH, the dosage is expressed by the product of absorbed dose (Gy) and quality factor (a function of linear energy transfer), and is called radiation dose equivalent in sievert units (Sv).Artifacts: Any visible result of a procedure which is caused by the procedure itself and not by the entity being analyzed. Common examples include histological structures introduced by tissue processing, radiographic images of structures that are not naturally present in living tissue, and products of chemical reactions that occur during analysis.Radiographic Image Enhancement: Improvement in the quality of an x-ray image by use of an intensifying screen, tube, or filter and by optimum exposure techniques. Digital processing methods are often employed.Spectrometry, X-Ray Emission: The spectrometric analysis of fluorescent X-RAYS, i.e. X-rays emitted after bombarding matter with high energy particles such as PROTONS; ELECTRONS; or higher energy X-rays. Identification of ELEMENTS by this technique is based on the specific type of X-rays that are emitted which are characteristic of the specific elements in the material being analyzed. The characteristic X-rays are distinguished and/or quantified by either wavelength dispersive or energy dispersive methods.Germanium: A rare metal element with a blue-gray appearance and atomic symbol Ge, atomic number 32, and atomic weight 72.63.X-Ray Microtomography: X-RAY COMPUTERIZED TOMOGRAPHY with resolution in the micrometer range.Algorithms: A procedure consisting of a sequence of algebraic formulas and/or logical steps to calculate or determine a given task.Contrast Media: Substances used to allow enhanced visualization of tissues.Brain: The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.Whole Body Imaging: The creation of a visual display of the inside of the entire body of a human or animal for the purposes of diagnostic evaluation. This is most commonly achieved by using MAGNETIC RESONANCE IMAGING; or POSITRON EMISSION TOMOGRAPHY.Fluorine Radioisotopes: Unstable isotopes of fluorine that decay or disintegrate emitting radiation. F atoms with atomic weights 17, 18, and 20-22 are radioactive fluorine isotopes.Lutetium: Lutetium. An element of the rare earth family of metals. It has the atomic symbol Lu, atomic number 71, and atomic weight 175.Image Interpretation, Computer-Assisted: Methods developed to aid in the interpretation of ultrasound, radiographic images, etc., for diagnosis of disease.Crystallization: The formation of crystalline substances from solutions or melts. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed)X-Ray Intensifying Screens: Screens which absorb the energy in the x-ray beam that has penetrated the patient and convert this energy into a light pattern which has as nearly as possible the same information as the original x-ray beam. The more light a screen produces for a given input of x-radiation, the less x-ray exposure and thus shorter exposure time are needed to expose the film. In most film-screen systems, the film is sandwiched between two screens in a cassette so that the emulsion on each side is exposed to the light from its contiguous screen.Ultrasonography: The visualization of deep structures of the body by recording the reflections or echoes of ultrasonic pulses directed into the tissues. Use of ultrasound for imaging or diagnostic purposes employs frequencies ranging from 1.6 to 10 megahertz.Diagnostic Imaging: Any visual display of structural or functional patterns of organs or tissues for diagnostic evaluation. It includes measuring physiologic and metabolic responses to physical and chemical stimuli, as well as ultramicroscopy.Synchrotrons: Devices for accelerating protons or electrons in closed orbits where the accelerating voltage and magnetic field strength varies (the accelerating voltage is held constant for electrons) in order to keep the orbit radius constant.Subtraction Technique: Combination or superimposition of two images for demonstrating differences between them (e.g., radiograph with contrast vs. one without, radionuclide images using different radionuclides, radiograph vs. radionuclide image) and in the preparation of audiovisual materials (e.g., offsetting identical images, coloring of vessels in angiograms).Scattering, Radiation: The diversion of RADIATION (thermal, electromagnetic, or nuclear) from its original path as a result of interactions or collisions with atoms, molecules, or larger particles in the atmosphere or other media. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)Transducers: Any device or element which converts an input signal into an output signal of a different form. Examples include the microphone, phonographic pickup, loudspeaker, barometer, photoelectric cell, automobile horn, doorbell, and underwater sound transducer. (McGraw Hill Dictionary of Scientific and Technical Terms, 4th ed)Radiometry: The measurement of radiation by photography, as in x-ray film and film badge, by Geiger-Mueller tube, and by SCINTILLATION COUNTING.Radiography, Thoracic: X-ray visualization of the chest and organs of the thoracic cavity. It is not restricted to visualization of the lungs.Feasibility Studies: Studies to determine the advantages or disadvantages, practicability, or capability of accomplishing a projected plan, study, or project.Predictive Value of Tests: In screening and diagnostic tests, the probability that a person with a positive test is a true positive (i.e., has the disease), is referred to as the predictive value of a positive test; whereas, the predictive value of a negative test is the probability that the person with a negative test does not have the disease. Predictive value is related to the sensitivity and specificity of the test.Silicates: The generic term for salts derived from silica or the silicic acids. They contain silicon, oxygen, and one or more metals, and may contain hydrogen. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th Ed)Observer Variation: The failure by the observer to measure or identify a phenomenon accurately, which results in an error. Sources for this may be due to the observer's missing an abnormality, or to faulty technique resulting in incorrect test measurement, or to misinterpretation of the data. Two varieties are inter-observer variation (the amount observers vary from one another when reporting on the same material) and intra-observer variation (the amount one observer varies between observations when reporting more than once on the same material).Radiography, Abdominal: Radiographic visualization of the body between the thorax and the pelvis, i.e., within the peritoneal cavity.Gamma Cameras: Electronic instruments that produce photographs or cathode-ray tube images of the gamma-ray emissions from organs containing radionuclide tracers.Four-Dimensional Computed Tomography: Three-dimensional computed tomographic imaging with the added dimension of time, to follow motion during imaging.Time Factors: Elements of limited time intervals, contributing to particular results or situations.X-Ray Absorption Spectroscopy: Analysis of the energy absorbed across a spectrum of x-ray energies/wavelengths to determine the chemical structure and electronic states of the absorbing medium.Radiography: Examination of any part of the body for diagnostic purposes by means of X-RAYS or GAMMA RAYS, recording the image on a sensitized surface (such as photographic film).