SNARE Proteins: A superfamily of small proteins which are involved in the MEMBRANE FUSION events, intracellular protein trafficking and secretory processes. They share a homologous SNARE motif. The SNARE proteins are divided into subfamilies: QA-SNARES; QB-SNARES; QC-SNARES; and R-SNARES. The formation of a SNARE complex (composed of one each of the four different types SNARE domains (Qa, Qb, Qc, and R)) mediates MEMBRANE FUSION. Following membrane fusion SNARE complexes are dissociated by the NSFs (N-ETHYLMALEIMIDE-SENSITIVE FACTORS), in conjunction with SOLUBLE NSF ATTACHMENT PROTEIN, i.e., SNAPs (no relation to SNAP 25.)Synaptosomal-Associated Protein 25: A ubiquitous target SNARE protein that interacts with SYNTAXIN and SYNAPTOBREVIN. It is a core component of the machinery for intracellular MEMBRANE FUSION. The sequence contains 2 SNARE domains, one is the prototype for the Qb-SNARES, and the other is the prototype for the Qc-SNARES.Qa-SNARE Proteins: A subfamily of Q-SNARE PROTEINS which occupy the same position as syntaxin 1A in the SNARE complex and which also are most similar to syntaxin 1A in their AMINO ACID SEQUENCE. This subfamily is also known as the syntaxins, although a few so called syntaxins are Qc-SNARES.R-SNARE Proteins: SNARE proteins where the central amino acid residue of the SNARE motif is an ARGININE. They are classified separately from the Q-SNARE PROTEINS where the central amino acid residue of the SNARE motif is a GLUTAMINE. This subfamily contains the vesicle associated membrane proteins (VAMPs) based on similarity to the prototype for the R-SNAREs, VAMP2 (synaptobrevin 2).Qc-SNARE Proteins: A subfamily of Q-SNARE PROTEINS which occupy the same position in the SNARE complex as the C-terminal SNARE domain of SNAP-25 and which also are most similar to the C-terminal region of SNAP-25 in their AMINO ACID SEQUENCE.Vesicular Transport Proteins: A broad category of proteins involved in the formation, transport and dissolution of TRANSPORT VESICLES. They play a role in the intracellular transport of molecules contained within membrane vesicles. Vesicular transport proteins are distinguished from MEMBRANE TRANSPORT PROTEINS, which move molecules across membranes, by the mode in which the molecules are transported.Qb-SNARE Proteins: A subfamily of Q-SNARE PROTEINS which occupy the same position in the SNARE complex as the N-terminal SNARE domain of SNAP-25 and which also are most similar to the N-terminal region of SNAP-25 in their AMINO ACID SEQUENCE.Syntaxin 1: A neuronal cell membrane protein that combines with SNAP-25 and SYNAPTOBREVIN 2 to form a SNARE complex that leads to EXOCYTOSIS.Vesicle-Associated Membrane Protein 2: A synaptic membrane protein involved in MEMBRANE FUSION of SYNAPTIC VESICLES with the presynaptic membranes. It is the prototype member of the R-SNARE PROTEINS.Munc18 Proteins: A family of proteins involved in intracellular membrane trafficking. They interact with SYNTAXINS and play important roles in vesicular docking and fusion during EXOCYTOSIS. Their name derives from the fact that they are related to Unc-18 protein, C elegans.Membrane Fusion: The adherence and merging of cell membranes, intracellular membranes, or artificial membranes to each other or to viruses, parasites, or interstitial particles through a variety of chemical and physical processes.Exocytosis: Cellular release of material within membrane-limited vesicles by fusion of the vesicles with the CELL MEMBRANE.Membrane Proteins: Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins: SNARE binding proteins that facilitate the ATP hydrolysis-driven dissociation of the SNARE complex. They are required for the binding of N-ETHYLMALEIMIDE-SENSITIVE PROTEIN (NSF) to the SNARE complex which also stimulates the ATPASE activity of NSF. They are unrelated structurally to SNAP-25 PROTEIN.Vesicle-Associated Membrane Protein 1: A member of the vesicle-associated membrane protein family involved in the MEMBRANE FUSION of TRANSPORT VESICLES to their target membrane.Botulinum Toxins: Toxic proteins produced from the species CLOSTRIDIUM BOTULINUM. The toxins are synthesized as a single peptide chain which is processed into a mature protein consisting of a heavy chain and light chain joined via a disulfide bond. The botulinum toxin light chain is a zinc-dependent protease which is released from the heavy chain upon ENDOCYTOSIS into PRESYNAPTIC NERVE ENDINGS. Once inside the cell the botulinum toxin light chain cleaves specific SNARE proteins which are essential for secretion of ACETYLCHOLINE by SYNAPTIC VESICLES. This inhibition of acetylcholine release results in muscular PARALYSIS.Vesicle-Associated Membrane Protein 3: A member of the vesicle associated membrane protein family. It has a broad tissue distribution and is involved in MEMBRANE FUSION events of the endocytic pathways.N-Ethylmaleimide-Sensitive Proteins: ATPases that are members of the AAA protein superfamily (ATPase family Associated with various cellular Activities). The NSFs functions, acting in conjunction with SOLUBLE NSF ATTACHMENT PROTEINS (i.e. SNAPs, which have no relation to SNAP 25), are to dissociate SNARE complexes.Secretory Vesicles: Vesicles derived from the GOLGI APPARATUS containing material to be released at the cell surface.Tetanus Toxin: Protein synthesized by CLOSTRIDIUM TETANI as a single chain of ~150 kDa with 35% sequence identity to BOTULINUM TOXIN that is cleaved to a light and a heavy chain that are linked by a single disulfide bond. Tetanolysin is the hemolytic and tetanospasmin is the neurotoxic principle. The toxin causes disruption of the inhibitory mechanisms of the CNS, thus permitting uncontrolled nervous activity, leading to fatal CONVULSIONS.Nerve Tissue ProteinsSynaptotagmins: A family of vesicular transport proteins characterized by an N-terminal transmembrane region and two C-terminal calcium-binding domains.Golgi Apparatus: A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990)Synaptic Vesicles: Membrane-bound compartments which contain transmitter molecules. Synaptic vesicles are concentrated at presynaptic terminals. They actively sequester transmitter molecules from the cytoplasm. In at least some synapses, transmitter release occurs by fusion of these vesicles with the presynaptic membrane, followed by exocytosis of their contents.Transport Vesicles: Vesicles that are involved in shuttling cargo from the interior of the cell to the cell surface, from the cell surface to the interior, across the cell or around the cell to various locations.Synaptotagmin I: A vesicular transport protein expressed predominately in NEURONS. Synaptotagmin helps regulate EXOCYTOSIS of SYNAPTIC VESICLES and appears to serve as a calcium sensor to trigger NEUROTRANSMITTER release. It also acts as a nerve cell receptor for certain BOTULINUM TOXINS.Cell Membrane: The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells.Cytoplasmic Vesicles: Membrane-limited structures derived from the plasma membrane or various intracellular membranes which function in storage, transport or metabolism.Protein Binding: The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.Protein Transport: The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.Botulinum Toxins, Type A: A serotype of botulinum toxins that has specificity for cleavage of SYNAPTOSOMAL-ASSOCIATED PROTEIN 25.Vacuoles: Any spaces or cavities within a cell. They may function in digestion, storage, secretion, or excretion.Carrier Proteins: Transport proteins that carry specific substances in the blood or across cell membranes.PC12 Cells: A CELL LINE derived from a PHEOCHROMOCYTOMA of the rat ADRENAL MEDULLA. PC12 cells stop dividing and undergo terminal differentiation when treated with NERVE GROWTH FACTOR, making the line a useful model system for NERVE CELL differentiation.Saccharomyces cerevisiae Proteins: Proteins obtained from the species SACCHAROMYCES CEREVISIAE. The function of specific proteins from this organism are the subject of intense scientific interest and have been used to derive basic understanding of the functioning similar proteins in higher eukaryotes.Protein Structure, Tertiary: The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.Adaptor Proteins, Vesicular Transport: A class of proteins involved in the transport of molecules via TRANSPORT VESICLES. They perform functions such as binding to the cell membrane, capturing cargo molecules and promoting the assembly of CLATHRIN. The majority of adaptor proteins exist as multi-subunit complexes, however monomeric varieties have also been found.Syntaxin 16: A ubiquitously expressed member of the syntaxin subfamily of SNARE proteins that localizes to the GOLGI APPARATUS.Endosomes: Cytoplasmic vesicles formed when COATED VESICLES shed their CLATHRIN coat. Endosomes internalize macromolecules bound by receptors on the cell surface.Chromaffin Cells: Cells that store epinephrine secretory vesicles. During times of stress, the nervous system signals the vesicles to secrete their hormonal content. Their name derives from their ability to stain a brownish color with chromic salts. Characteristically, they are located in the adrenal medulla and paraganglia (PARAGANGLIA, CHROMAFFIN) of the sympathetic nervous system.rab GTP-Binding Proteins: A large family of MONOMERIC GTP-BINDING PROTEINS that play a key role in cellular secretory and endocytic pathways. EC 3.6.1.-.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Recombinant Fusion Proteins: Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes.Saccharomyces cerevisiae: A species of the genus SACCHAROMYCES, family Saccharomycetaceae, order Saccharomycetales, known as "baker's" or "brewer's" yeast. The dried form is used as a dietary supplement.Antigens, Surface: Antigens on surfaces of cells, including infectious or foreign cells or viruses. They are usually protein-containing groups on cell membranes or walls and may be isolated.Liposomes: Artificial, single or multilaminar vesicles (made from lecithins or other lipids) that are used for the delivery of a variety of biological molecules or molecular complexes to cells, for example, drug delivery and gene transfer. They are also used to study membranes and membrane proteins.Intracellular Membranes: Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES.Syntenins: Intracellular signaling adaptor proteins that play a role in the coupling of SYNDECANS to CYTOSKELETAL PROTEINS.Endoplasmic Reticulum: A system of cisternae in the CYTOPLASM of many cells. In places the endoplasmic reticulum is continuous with the plasma membrane (CELL MEMBRANE) or outer membrane of the nuclear envelope. If the outer surfaces of the endoplasmic reticulum membranes are coated with ribosomes, the endoplasmic reticulum is said to be rough-surfaced (ENDOPLASMIC RETICULUM, ROUGH); otherwise it is said to be smooth-surfaced (ENDOPLASMIC RETICULUM, SMOOTH). (King & Stansfield, A Dictionary of Genetics, 4th ed)Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Biological Transport: The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.Neurotransmitter Agents: Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function.Yeasts: A general term for single-celled rounded fungi that reproduce by budding. Brewers' and bakers' yeasts are SACCHAROMYCES CEREVISIAE; therapeutic dried yeast is YEAST, DRIED.Fungal Proteins: Proteins found in any species of fungus.Calcium: A basic element found in nearly all organized tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes.Q-SNARE Proteins: SNARE proteins in which the central amino acid residue of the SNARE motif is a GLUTAMINE. They are classified separately from the R-SNARE PROTEINS where the central amino acid residue of the SNARE motif is an ARGININE. Subfamilies, the QA-SNARES; QB-SNARES; and QC-SNARES are grouped by the position of their SNARE motif-containing-domains in the SNARE complex and by their sequence similarities.Synaptic Transmission: The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES.Proteolipids: Protein-lipid combinations abundant in brain tissue, but also present in a wide variety of animal and plant tissues. In contrast to lipoproteins, they are insoluble in water, but soluble in a chloroform-methanol mixture. The protein moiety has a high content of hydrophobic amino acids. The associated lipids consist of a mixture of GLYCEROPHOSPHATES; CEREBROSIDES; and SULFOGLYCOSPHINGOLIPIDS; while lipoproteins contain PHOSPHOLIPIDS; CHOLESTEROL; and TRIGLYCERIDES.Recombinant Proteins: Proteins prepared by recombinant DNA technology.Cytoplasmic Granules: Condensed areas of cellular material that may be bounded by a membrane.Synapses: Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions.Protein Structure, Secondary: The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to alpha helices, beta strands (which align to form beta sheets) or other types of coils. This is the first folding level of protein conformation.Neurons: The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM.Phagosomes: Membrane-bound cytoplasmic vesicles formed by invagination of phagocytized material. They fuse with lysosomes to form phagolysosomes in which the hydrolytic enzymes of the lysosome digest the phagocytized material.Models, Biological: Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment.Models, Molecular: Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.Microscopy, Fluorescence: Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye.Fluorescence Resonance Energy Transfer: A type of FLUORESCENCE SPECTROSCOPY using two FLUORESCENT DYES with overlapping emission and absorption spectra, which is used to indicate proximity of labeled molecules. This technique is useful for studying interactions of molecules and PROTEIN FOLDING.Immunoblotting: Immunologic method used for detecting or quantifying immunoreactive substances. The substance is identified by first immobilizing it by blotting onto a membrane and then tagging it with labeled antibodies.Neurotoxins: Toxic substances from microorganisms, plants or animals that interfere with the functions of the nervous system. Most venoms contain neurotoxic substances. Myotoxins are included in this concept.Macromolecular Substances: Compounds and molecular complexes that consist of very large numbers of atoms and are generally over 500 kDa in size. In biological systems macromolecular substances usually can be visualized using ELECTRON MICROSCOPY and are distinguished from ORGANELLES by the lack of a membrane structure.Sequence Homology, Amino Acid: The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.Green Fluorescent Proteins: Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH.