Transmembrane proteins belonging to the tumor necrosis factor superfamily that play an essential role in the normal development of several ectodermally derived organs. Several isoforms of the ectodysplasins exist due to multiple ALTERNATIVE SPLICING of the MRNA for the protein. The isoforms ectodysplasin A1 and ectodysplasin A2 are considered biologically active and each bind distinct ECTODYSPLASIN RECEPTORS. Genetic mutations that result in loss of function of ectodysplasin result in ECTODERMAL DYSPLASIA 1, ANHIDROTIC.
Members of the TNF receptor family that are specific for ECTODYSPLASIN. At least two subtypes of the ectodysplasin receptor exist, each being specific for a ectodysplasin isoform. Signaling through ectodysplasin receptors plays an essential role in the normal ectodermal development. Genetic defects that result in loss of ectodysplasin receptor function results ECTODERMAL DYSPLASIA.
A ectodysplasin receptor subtype that is specific for ECTODYSPLASIN A1. It signals via the specific signaling adaptor EDAR-ASSOCIATED DEATH DOMAIN PROTEIN. Loss of function of the edar receptor is associated with AUTOSOMAL RECESSIVE ANHIDROTIC ECTODERMAL DYSPLASIA and ECTODERMAL DYSPLASIA 3, ANHIDROTIC.
A group of hereditary disorders involving tissues and structures derived from the embryonic ectoderm. They are characterized by the presence of abnormalities at birth and involvement of both the epidermis and skin appendages. They are generally nonprogressive and diffuse. Various forms exist, including anhidrotic and hidrotic dysplasias, FOCAL DERMAL HYPOPLASIA, and aplasia cutis congenita.
A tumor necrosis factor receptor-associated factor that acts as a specific signaling adaptor protein for the EDAR RECEPTOR and plays an important role in ectodermal development. It binds to edar receptor via its C-terminal death domain region and to other specific TNF receptor-associated factors via its N-terminal domain. Loss of function of edar-associated death domain protein is associated with AUTOSOMAL RECESSIVE ANHIDROTIC ECTODERMAL DYSPLASIA.
Sweat-producing structures that are embedded in the DERMIS. Each gland consists of a single tube, a coiled body, and a superficial duct.
A tube-like invagination of the EPIDERMIS from which the hair shaft develops and into which SEBACEOUS GLANDS open. The hair follicle is lined by a cellular inner and outer root sheath of epidermal origin and is invested with a fibrous sheath derived from the dermis. (Stedman, 26th ed) Follicles of very long hairs extend into the subcutaneous layer of tissue under the SKIN.
A filament-like structure consisting of a shaft which projects to the surface of the SKIN from a root which is softer than the shaft and lodges in the cavity of a HAIR FOLLICLE. It is found on most surfaces of the body.
Group of fish under the superorder Acanthopterygii, separate from the PERCIFORMES, which includes swamp eels, mullets, sticklebacks, seahorses, spiny eels, rainbowfishes, and KILLIFISHES. The name is derived from the six taxa which comprise the group. (From http://www.nanfa.org/articles/Elassoma/elassoma.htm, 8/4/2000)
One of a set of bone-like structures in the mouth used for biting and chewing.
A HEPARIN binding fibroblast growth factor that may play a role in LIMB BUDS development.
The process of TOOTH formation. It is divided into several stages including: the dental lamina stage, the bud stage, the cap stage, and the bell stage. Odontogenesis includes the production of tooth enamel (AMELOGENESIS), dentin (DENTINOGENESIS), and dental cementum (CEMENTOGENESIS).
The outer of the three germ layers of an embryo.
Cell surface receptors that bind TUMOR NECROSIS FACTORS and trigger changes which influence the behavior of cells.
The most posterior teeth on either side of the jaw, totaling eight in the deciduous dentition (2 on each side, upper and lower), and usually 12 in the permanent dentition (three on each side, upper and lower). They are grinding teeth, having large crowns and broad chewing surfaces. (Jablonski, Dictionary of Dentistry, 1992, p821)
Activins are produced in the pituitary, gonads, and other tissues. By acting locally, they stimulate pituitary FSH secretion and have diverse effects on cell differentiation and embryonic development. Activins are glycoproteins that are hetero- or homodimers of INHIBIN-BETA SUBUNITS.
A technique for maintenance or growth of animal organs in vitro. It refers to three-dimensional cultures of undisaggregated tissue retaining some or all of the histological features of the tissue in vivo. (Freshney, Culture of Animal Cells, 3d ed, p1)
Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors.
Wnt proteins are a large family of secreted glycoproteins that play essential roles in EMBRYONIC AND FETAL DEVELOPMENT, and tissue maintenance. They bind to FRIZZLED RECEPTORS and act as PARACRINE PROTEIN FACTORS to initiate a variety of SIGNAL TRANSDUCTION PATHWAYS. The canonical Wnt signaling pathway stabilizes the transcriptional coactivator BETA CATENIN.
The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes.
The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed)