A filament-like structure consisting of a shaft which projects to the surface of the SKIN from a root which is softer than the shaft and lodges in the cavity of a HAIR FOLLICLE. It is found on most surfaces of the body.
A tube-like invagination of the EPIDERMIS from which the hair shaft develops and into which SEBACEOUS GLANDS open. The hair follicle is lined by a cellular inner and outer root sheath of epidermal origin and is invested with a fibrous sheath derived from the dermis. (Stedman, 26th ed) Follicles of very long hairs extend into the subcutaneous layer of tissue under the SKIN.
Sensory cells in the organ of Corti, characterized by their apical stereocilia (hair-like projections). The inner and outer hair cells, as defined by their proximity to the core of spongy bone (the modiolus), change morphologically along the COCHLEA. Towards the cochlear apex, the length of hair cell bodies and their apical STEREOCILIA increase, allowing differential responses to various frequencies of sound.
Color of hair or fur.
Diseases affecting the orderly growth and persistence of hair.
Auditory sensory cells of organ of Corti, usually placed in one row medially to the core of spongy bone (the modiolus). Inner hair cells are in fewer numbers than the OUTER AUDITORY HAIR CELLS, and their STEREOCILIA are approximately twice as thick as those of the outer hair cells.
Methods used to remove unwanted facial and body hair.
Dyes used as cosmetics to change hair color either permanently or temporarily.
Sensory cells in the acoustic maculae with their apical STEREOCILIA embedded in a gelatinous OTOLITHIC MEMBRANE. These hair cells are stimulated by the movement of otolithic membrane, and impulses are transmitted via the VESTIBULAR NERVE to the BRAIN STEM. Hair cells in the saccule and those in the utricle sense linear acceleration in vertical and horizontal directions, respectively.
Sensory cells of organ of Corti. In mammals, they are usually arranged in three or four rows, and away from the core of spongy bone (the modiolus), lateral to the INNER AUDITORY HAIR CELLS and other supporting structures. Their cell bodies and STEREOCILIA increase in length from the cochlear base toward the apex and laterally across the rows, allowing differential responses to various frequencies of sound.
Hair grooming, cleansing and modifying products meant for topical application to hair, usually human. They include sprays, bleaches, dyes, conditioners, rinses, shampoos, nutrient lotions, etc.
Absence of hair from areas where it is normally present.
Two membranous sacs within the vestibular labyrinth of the INNER EAR. The saccule communicates with COCHLEAR DUCT through the ductus reuniens, and communicates with utricle through the utriculosaccular duct from which the ENDOLYMPHATIC DUCT arises. The utricle and saccule have sensory areas (acoustic maculae) which are innervated by the VESTIBULAR NERVE.
The part of the inner ear (LABYRINTH) that is concerned with hearing. It forms the anterior part of the labyrinth, as a snail-like structure that is situated almost horizontally anterior to the VESTIBULAR LABYRINTH.
The spiral EPITHELIUM containing sensory AUDITORY HAIR CELLS and supporting cells in the cochlea. Organ of Corti, situated on the BASILAR MEMBRANE and overlaid by a gelatinous TECTORIAL MEMBRANE, converts sound-induced mechanical waves to neural impulses to the brain.
The outer covering of the calvaria. It is composed of several layers: SKIN; subcutaneous connective tissue; the occipitofrontal muscle which includes the tendinous galea aponeurotica; loose connective tissue; and the pericranium (the PERIOSTEUM of the SKULL).
Mechanosensing organelles of hair cells which respond to fluid motion or fluid pressure changes. They have various functions in many different animals, but are primarily used in hearing.
The essential part of the hearing organ consists of two labyrinthine compartments: the bony labyrinthine and the membranous labyrinth. The bony labyrinth is a complex of three interconnecting cavities or spaces (COCHLEA; VESTIBULAR LABYRINTH; and SEMICIRCULAR CANALS) in the TEMPORAL BONE. Within the bony labyrinth lies the membranous labyrinth which is a complex of sacs and tubules (COCHLEAR DUCT; SACCULE AND UTRICLE; and SEMICIRCULAR DUCTS) forming a continuous space enclosed by EPITHELIUM and connective tissue. These spaces are filled with LABYRINTHINE FLUIDS of various compositions.
Sensory cells in the ampullary crest of each of the semicircular ducts, with their apical STEREOCILIA embedded in a wedge-shaped gelatinous cupula. These hair cells sense the movement of ENDOLYMPH resulting from angular acceleration of the head, and send signals via the VESTIBULAR NERVE to the brain to maintain balance.
Chemicals that are used to oxidize pigments in HAIR.
Keratins that are specific for hard tissues such as HAIR; NAILS; and the filiform papillae of the TONGUE.
Presence of less than the normal amount of hair. (Dorland, 27th ed)
The process by which cells convert mechanical stimuli into a chemical response. It can occur in both cells specialized for sensing mechanical cues such as MECHANORECEPTORS, and in parenchymal cells whose primary function is not mechanosensory.
Cells forming a framework supporting the sensory AUDITORY HAIR CELLS in the organ of Corti. Lateral to the medial inner hair cells, there are inner pillar cells, outer pillar cells, Deiters cells, Hensens cells, Claudius cells, Boettchers cells, and others.
The usually underground portions of a plant that serve as support, store food, and through which water and mineral nutrients enter the plant. (From American Heritage Dictionary, 1982; Concise Dictionary of Biology, 1990)
The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
Small, sacculated organs found within the DERMIS. Each gland has a single duct that emerges from a cluster of oval alveoli. Each alveolus consists of a transparent BASEMENT MEMBRANE enclosing epithelial cells. The ducts from most sebaceous glands open into a HAIR FOLLICLE, but some open on the general surface of the SKIN. Sebaceous glands secrete SEBUM.
Transmembrane proteins belonging to the tumor necrosis factor superfamily that play an essential role in the normal development of several ectodermally derived organs. Several isoforms of the ectodysplasins exist due to multiple ALTERNATIVE SPLICING of the MRNA for the protein. The isoforms ectodysplasin A1 and ectodysplasin A2 are considered biologically active and each bind distinct ECTODYSPLASIN RECEPTORS. Genetic mutations that result in loss of function of ectodysplasin result in ECTODERMAL DYSPLASIA 1, ANHIDROTIC.
Aquatic vertebrate sensory system in fish and amphibians. It is composed of sense organs (canal organs and pit organs) containing neuromasts (MECHANORECEPTORS) that detect water displacement caused by moving objects.
A potent direct-acting peripheral vasodilator (VASODILATOR AGENTS) that reduces peripheral resistance and produces a fall in BLOOD PRESSURE. (From Martindale, The Extra Pharmacopoeia, 30th ed, p371)
A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION.
Insoluble polymers of TYROSINE derivatives found in and causing darkness in skin (SKIN PIGMENTATION), hair, and feathers providing protection against SUNBURN induced by SUNLIGHT. CAROTENES contribute yellow and red coloration.
Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell.
A layer of vascularized connective tissue underneath the EPIDERMIS. The surface of the dermis contains innervated papillae. Embedded in or beneath the dermis are SWEAT GLANDS; HAIR FOLLICLES; and SEBACEOUS GLANDS.
A species of the family Ranidae (true frogs). The only anuran properly referred to by the common name "bullfrog", it is the largest native anuran in North America.
Cells specialized to transduce mechanical stimuli and relay that information centrally in the nervous system. Mechanoreceptor cells include the INNER EAR hair cells, which mediate hearing and balance, and the various somatosensory receptors, often with non-neural accessory structures.
A keratin subtype that includes keratins that are generally larger and less acidic that TYPE I KERATINS. Type II keratins combine with type I keratins to form keratin filaments.
The sensory ganglion of the COCHLEAR NERVE. The cells of the spiral ganglion send fibers peripherally to the cochlear hair cells and centrally to the COCHLEAR NUCLEI of the BRAIN STEM.
Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY.
Electrical waves in the CEREBRAL CORTEX generated by BRAIN STEM structures in response to auditory click stimuli. These are found to be abnormal in many patients with CEREBELLOPONTINE ANGLE lesions, MULTIPLE SCLEROSIS, or other DEMYELINATING DISEASES.
A fibroblast growth factor that may play a role in regulation of HAIR FOLLICLE phenotype. Spontaneous mutation of the gene for this protein results in a strain of MICE with abnormally long hair, referred to as angora mice.
The physiological renewal, repair, or replacement of tissue.