A spectrum of septal defects involving the ATRIAL SEPTUM; VENTRICULAR SEPTUM; and the atrioventricular valves (TRICUSPID VALVE; BICUSPID VALVE). These defects are due to incomplete growth and fusion of the ENDOCARDIAL CUSHIONS which are important in the formation of two atrioventricular canals, site of future atrioventricular valves.
A fetal heart structure that is the bulging areas in the cardiac septum between the HEART ATRIA and the HEART VENTRICLES. During development, growth and fusion of endocardial cushions at midline forms the two atrioventricular canals, the sites for future TRICUSPID VALVE and BICUSPID VALVE.
Developmental abnormalities involving structures of the heart. These defects are present at birth but may be discovered later in life.
Flaps of tissue that prevent regurgitation of BLOOD from the HEART VENTRICLES to the HEART ATRIA or from the PULMONARY ARTERIES or AORTA to the ventricles.
The innermost layer of the heart, comprised of endothelial cells.
This structure includes the thin muscular atrial septum between the two HEART ATRIA, and the thick muscular ventricular septum between the two HEART VENTRICLES.
The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube.
Abnormalities in any part of the HEART SEPTUM resulting in abnormal communication between the left and the right chambers of the heart. The abnormal blood flow inside the heart may be caused by defects in the ATRIAL SEPTUM, the VENTRICULAR SEPTUM, or both.
The hollow, muscular organ that maintains the circulation of the blood.
A TGF-beta subtype that was originally identified as a GLIOBLASTOMA-derived factor which inhibits the antigen-dependent growth of both helper and CYTOTOXIC T LYMPHOCYTES. It is synthesized as a precursor molecule that is cleaved to form mature TGF-beta2 and TGF-beta2 latency-associated peptide. The association of the cleavage products results in the formation a latent protein which must be activated to bind its receptor.
The thin membrane-like muscular structure separating the right and the left upper chambers (HEART ATRIA) of a heart.
The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching.
The heart of the fetus of any viviparous animal. It refers to the heart in the postembryonic period and is differentiated from the embryonic heart (HEART/embryology) only on the basis of time.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.
The study of the development of an organism during the embryonic and fetal stages of life.
A TGF-beta subtype that plays role in regulating epithelial-mesenchymal interaction during embryonic development. It is synthesized as a precursor molecule that is cleaved to form mature TGF-beta3 and TGF-beta3 latency-associated peptide. The association of the cleavage products results in the formation a latent protein which must be activated to bind its receptor.
HYALURONAN-containing proteoglycans found in the EXTRACELLULAR MATRIX of a variety of tissues and organs. Several versican isoforms exist due to multiple ALTERNATIVE SPLICING of the versican MESSENGER RNA.
The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.