DNA Restriction Enzymes: Enzymes that are part of the restriction-modification systems. They catalyze the endonucleolytic cleavage of DNA sequences which lack the species-specific methylation pattern in the host cell's DNA. Cleavage yields random or specific double-stranded fragments with terminal 5'-phosphates. The function of restriction enzymes is to destroy any foreign DNA that invades the host cell. Most have been studied in bacterial systems, but a few have been found in eukaryotic organisms. They are also used as tools for the systematic dissection and mapping of chromosomes, in the determination of base sequences of DNAs, and have made it possible to splice and recombine genes from one organism into the genome of another. EC 3.21.1.Polymorphism, Restriction Fragment Length: Variation occurring within a species in the presence or length of DNA fragment generated by a specific endonuclease at a specific site in the genome. Such variations are generated by mutations that create or abolish recognition sites for these enzymes or change the length of the fragment.Deoxyribonucleases, Type II Site-Specific: Enzyme systems containing a single subunit and requiring only magnesium for endonucleolytic activity. The corresponding modification methylases are separate enzymes. The systems recognize specific short DNA sequences and cleave either within, or at a short specific distance from, the recognition sequence to give specific double-stranded fragments with terminal 5'-phosphates. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC, Type I Site-Specific: Enzyme systems containing three different subunits and requiring ATP, S-adenosylmethionine, and magnesium for endonucleolytic activity to give random double-stranded fragments with terminal 5'-phosphates. They function also as DNA-dependent ATPases and modification methylases, catalyzing the reactions of EC and EC with similar site-specificity. The systems recognize specific short DNA sequences and cleave at sites remote from the recognition sequence. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC, Bacterial: Deoxyribonucleic acid that makes up the genetic material of bacteria.Restriction Mapping: Use of restriction endonucleases to analyze and generate a physical map of genomes, genes, or other segments of DNA.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Deoxyribonuclease EcoRI: One of the Type II site-specific deoxyribonucleases (EC It recognizes and cleaves the sequence G/AATTC at the slash. EcoRI is from E coliRY13. Several isoschizomers have been identified. EC 3.1.21.-.DNA: A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).Nucleic Acid Hybridization: Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503)DNA Restriction-Modification Enzymes: Systems consisting of two enzymes, a modification methylase and a restriction endonuclease. They are closely related in their specificity and protect the DNA of a given bacterial species. The methylase adds methyl groups to adenine or cytosine residues in the same target sequence that constitutes the restriction enzyme binding site. The methylation renders the target site resistant to restriction, thereby protecting DNA against cleavage.Plasmids: Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS.DNA, Viral: Deoxyribonucleic acid that makes up the genetic material of viruses.Electrophoresis, Agar Gel: Electrophoresis in which agar or agarose gel is used as the diffusion medium.Deoxyribonuclease BamHI: One of the Type II site-specific deoxyribonucleases (EC It recognizes and cleaves the sequence G/GATCC at the slash. BamHI is from Bacillus amyloliquefaciens N. Numerous isoschizomers have been identified. EC 3.1.21.-.Deoxyribonuclease HindIII: One of the Type II site-specific deoxyribonucleases (EC It recognizes and cleaves the sequence A/AGCTT at the slash. HindIII is from Haemophilus influenzae R(d). Numerous isoschizomers have been identified. EC 3.1.21.-.Polymerase Chain Reaction: In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships.DNA, Ribosomal: DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Caloric Restriction: Reduction in caloric intake without reduction in adequate nutrition. In experimental animals, caloric restriction has been shown to extend lifespan and enhance other physiological variables.Ribonucleoproteins, Small Nuclear: Highly conserved nuclear RNA-protein complexes that function in RNA processing in the nucleus, including pre-mRNA splicing and pre-mRNA 3'-end processing in the nucleoplasm, and pre-rRNA processing in the nucleolus (see RIBONUCLEOPROTEINS, SMALL NUCLEOLAR).Site-Specific DNA-Methyltransferase (Adenine-Specific): An enzyme responsible for producing a species-characteristic methylation pattern on adenine residues in a specific short base sequence in the host cell DNA. The enzyme catalyzes the methylation of DNA adenine in the presence of S-adenosyl-L-methionine to form DNA containing 6-methylaminopurine and S-adenosyl-L-homocysteine. EC, Molecular: The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.DNA Fingerprinting: A technique for identifying individuals of a species that is based on the uniqueness of their DNA sequence. Uniqueness is determined by identifying which combination of allelic variations occur in the individual at a statistically relevant number of different loci. In forensic studies, RESTRICTION FRAGMENT LENGTH POLYMORPHISM of multiple, highly polymorphic VNTR LOCI or MICROSATELLITE REPEAT loci are analyzed. The number of loci used for the profile depends on the ALLELE FREQUENCY in the population.Genes: A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms.Blotting, Southern: A method (first developed by E.M. Southern) for detection of DNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES.Escherichia coli: A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.Bacterial Typing Techniques: Procedures for identifying types and strains of bacteria. The most frequently employed typing systems are BACTERIOPHAGE TYPING and SEROTYPING as well as bacteriocin typing and biotyping.DNA, Recombinant: Biologically active DNA which has been formed by the in vitro joining of segments of DNA from different sources. It includes the recombination joint or edge of a heteroduplex region where two recombining DNA molecules are connected.Species Specificity: The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species.Chromosome Mapping: Any method used for determining the location of and relative distances between genes on a chromosome.Electrophoresis, Gel, Pulsed-Field: Gel electrophoresis in which the direction of the electric field is changed periodically. This technique is similar to other electrophoretic methods normally used to separate double-stranded DNA molecules ranging in size up to tens of thousands of base-pairs. However, by alternating the electric field direction one is able to separate DNA molecules up to several million base-pairs in length.Olivomycins: A mixture of several closely related glycosidic antibiotics obtained from Actinomyces (or Streptomyces) olivoreticuli. They are used as fluorescent dyes that bind to DNA and prevent both RNA and protein synthesis and are also used as antineoplastic agents.Polymorphism, Genetic: The regular and simultaneous occurrence in a single interbreeding population of two or more discontinuous genotypes. The concept includes differences in genotypes ranging in size from a single nucleotide site (POLYMORPHISM, SINGLE NUCLEOTIDE) to large nucleotide sequences visible at a chromosomal level.RNA, Ribosomal, 16S: Constituent of 30S subunit prokaryotic ribosomes containing 1600 nucleotides and 21 proteins. 16S rRNA is involved in initiation of polypeptide synthesis.Deoxyribonuclease HpaII: One of the Type II site-specific deoxyribonucleases (EC It recognizes and cleaves the sequences C/CGG and GGC/C at the slash. HpaII is from Haemophilus parainfluenzae. Several isoschizomers have been identified. EC 3.1.21.-.Sequence Analysis, DNA: A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.Genes, Viral: The functional hereditary units of VIRUSES.Adenovirus Infections, Human: Respiratory and conjunctival infections caused by 33 identified serotypes of human adenoviruses.Genes, Bacterial: The functional hereditary units of BACTERIA.DNA, Circular: Any of the covalently closed DNA molecules found in bacteria, many viruses, mitochondria, plastids, and plasmids. Small, polydisperse circular DNA's have also been observed in a number of eukaryotic organisms and are suggested to have homology with chromosomal DNA and the capacity to be inserted into, and excised from, chromosomal DNA. It is a fragment of DNA formed by a process of looping out and deletion, containing a constant region of the mu heavy chain and the 3'-part of the mu switch region. Circular DNA is a normal product of rearrangement among gene segments encoding the variable regions of immunoglobulin light and heavy chains, as well as the T-cell receptor. (Riger et al., Glossary of Genetics, 5th ed & Segen, Dictionary of Modern Medicine, 1992)Genotype: The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS.Deoxyribonucleases, Type III Site-Specific: Enzyme systems composed of two subunits and requiring ATP and magnesium for endonucleolytic activity; they do not function as ATPases. They exist as complexes with modification methylases of similar specificity listed under EC or EC The systems recognize specific short DNA sequences and cleave a short distance, about 24 to 27 bases, away from the recognition sequence to give specific double-stranded fragments with terminal 5'-phosphates. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC, Ribosomal: The most abundant form of RNA. Together with proteins, it forms the ribosomes, playing a structural role and also a role in ribosomal binding of mRNA and tRNAs. Individual chains are conventionally designated by their sedimentation coefficients. In eukaryotes, four large chains exist, synthesized in the nucleolus and constituting about 50% of the ribosome. (Dorland, 28th ed)Bacteriophages: Viruses whose hosts are bacterial cells.Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Genetic Variation: Genotypic differences observed among individuals in a population.Serotyping: Process of determining and distinguishing species of bacteria or viruses based on antigens they share.DNA Probes: Species- or subspecies-specific DNA (including COMPLEMENTARY DNA; conserved genes, whole chromosomes, or whole genomes) used in hybridization studies in order to identify microorganisms, to measure DNA-DNA homologies, to group subspecies, etc. The DNA probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the DNA probe include the radioisotope labels 32P and 125I and the chemical label biotin. The use of DNA probes provides a specific, sensitive, rapid, and inexpensive replacement for cell culture techniques for diagnosing infections.