Apolipoprotein C-III: A 9-kDa protein component of VERY-LOW-DENSITY LIPOPROTEINS and CHYLOMICRON REMNANTS. Apo C-III, synthesized in the liver, is an inhibitor of LIPOPROTEIN LIPASE. Apo C-III modulates the binding of chylomicron remnants and VLDL to receptors (RECEPTORS, LDL) thus decreases the uptake of triglyceride-rich particles by the liver cells and subsequent degradation. The normal Apo C-III is glycosylated. There are several polymorphic forms with varying amounts of SIALIC ACID (Apo C-III-0, Apo C-III-1, and Apo C-III-2).Apolipoproteins C: A group of apolipoproteins that can readily exchange among the various classes of lipoproteins (HDL; VLDL; CHYLOMICRONS). After lipolysis of TRIGLYCERIDES on VLDL and chylomicrons, Apo-C proteins are normally transferred to HDL. The subtypes can modulate remnant binding to receptors, LECITHIN CHOLESTEROL ACYLTRANSFERASE, or LIPOPROTEIN LIPASE.Apolipoprotein A-I: The most abundant protein component of HIGH DENSITY LIPOPROTEINS or HDL. This protein serves as an acceptor for CHOLESTEROL released from cells thus promoting efflux of cholesterol to HDL then to the LIVER for excretion from the body (reverse cholesterol transport). It also acts as a cofactor for LECITHIN CHOLESTEROL ACYLTRANSFERASE that forms CHOLESTEROL ESTERS on the HDL particles. Mutations of this gene APOA1 cause HDL deficiency, such as in FAMILIAL ALPHA LIPOPROTEIN DEFICIENCY DISEASE and in some patients with TANGIER DISEASE.Apolipoproteins: Protein components on the surface of LIPOPROTEINS. They form a layer surrounding the hydrophobic lipid core. There are several classes of apolipoproteins with each playing a different role in lipid transport and LIPID METABOLISM. These proteins are synthesized mainly in the LIVER and the INTESTINES.Lipoproteins, VLDL: A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues.Hyperlipoproteinemia Type IV: A hypertriglyceridemia disorder, often with autosomal dominant inheritance. It is characterized by the persistent elevations of plasma TRIGLYCERIDES, endogenously synthesized and contained predominantly in VERY-LOW-DENSITY LIPOPROTEINS (pre-beta lipoproteins). In contrast, the plasma CHOLESTEROL and PHOSPHOLIPIDS usually remain within normal limits.Parturient Paresis: A disease of pregnant and lactating cows and ewes leading to generalized paresis and death. The disease, which is characterized by hypocalcemia, occurs at or shortly after parturition in cows and within weeks before or after parturition in ewes.Apolipoproteins E: A class of protein components which can be found in several lipoproteins including HIGH-DENSITY LIPOPROTEINS; VERY-LOW-DENSITY LIPOPROTEINS; and CHYLOMICRONS. Synthesized in most organs, Apo E is important in the global transport of lipids and cholesterol throughout the body. Apo E is also a ligand for LDL receptors (RECEPTORS, LDL) that mediates the binding, internalization, and catabolism of lipoprotein particles in cells. There are several allelic isoforms (such as E2, E3, and E4). Deficiency or defects in Apo E are causes of HYPERLIPOPROTEINEMIA TYPE III.Apolipoproteins B: Major structural proteins of triacylglycerol-rich LIPOPROTEINS. There are two forms, apolipoprotein B-100 and apolipoprotein B-48, both derived from a single gene. ApoB-100 expressed in the liver is found in low-density lipoproteins (LIPOPROTEINS, LDL; LIPOPROTEINS, VLDL). ApoB-48 expressed in the intestine is found in CHYLOMICRONS. They are important in the biosynthesis, transport, and metabolism of triacylglycerol-rich lipoproteins. Plasma Apo-B levels are high in atherosclerotic patients but non-detectable in ABETALIPOPROTEINEMIA.TriglyceridesLipoproteins, HDL: A class of lipoproteins of small size (4-13 nm) and dense (greater than 1.063 g/ml) particles. HDL lipoproteins, synthesized in the liver without a lipid core, accumulate cholesterol esters from peripheral tissues and transport them to the liver for re-utilization or elimination from the body (the reverse cholesterol transport). Their major protein component is APOLIPOPROTEIN A-I. HDL also shuttle APOLIPOPROTEINS C and APOLIPOPROTEINS E to and from triglyceride-rich lipoproteins during their catabolism. HDL plasma level has been inversely correlated with the risk of cardiovascular diseases.Apolipoprotein C-II: A 9-kDa protein component of VERY-LOW-DENSITY LIPOPROTEINS. It contains a cofactor for LIPOPROTEIN LIPASE and activates several triacylglycerol lipases. The association of Apo C-II with plasma CHYLOMICRONS; VLDL, and HIGH-DENSITY LIPOPROTEINS is reversible and changes rapidly as a function of triglyceride metabolism. Clinically, Apo C-II deficiency is similar to lipoprotein lipase deficiency (HYPERLIPOPROTEINEMIA TYPE I) and is therefore called hyperlipoproteinemia type IB.Cholesterol, VLDL: Cholesterol which is contained in or bound to very low density lipoproteins (VLDL). High circulating levels of VLDL cholesterol are found in HYPERLIPOPROTEINEMIA TYPE IIB. The cholesterol on the VLDL is eventually delivered by LOW-DENSITY LIPOPROTEINS to the tissues after the catabolism of VLDL to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LDL.Hypertriglyceridemia: A condition of elevated levels of TRIGLYCERIDES in the blood.Apolipoprotein B-100: A 513-kDa protein synthesized in the LIVER. It serves as the major structural protein of low-density lipoproteins (LIPOPROTEINS, LDL; LIPOPROTEINS, VLDL). It is the ligand for the LDL receptor (RECEPTORS, LDL) that promotes cellular binding and internalization of LDL particles.Chylomicrons: A class of lipoproteins that carry dietary CHOLESTEROL and TRIGLYCERIDES from the SMALL INTESTINE to the tissues. Their density (0.93-1.006 g/ml) is the same as that of VERY-LOW-DENSITY LIPOPROTEINS.Apolipoprotein C-I: A 6.6-kDa protein component of VERY-LOW-DENSITY LIPOPROTEINS; INTERMEDIATE-DENSITY LIPOPROTEINS; and HIGH-DENSITY LIPOPROTEINS. Apo C-I displaces APO E from lipoproteins, modulate their binding to receptors (RECEPTORS, LDL), and thereby decrease their clearance from plasma. Elevated Apo C-I levels are associated with HYPERLIPOPROTEINEMIA and ATHEROSCLEROSIS.Isoelectric Focusing: Electrophoresis in which a pH gradient is established in a gel medium and proteins migrate until they reach the site (or focus) at which the pH is equal to their isoelectric point.Lipoproteins: Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes.Cholesterol: The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils.Apolipoprotein E4: A major and the second most common isoform of apolipoprotein E. In humans, Apo E4 differs from APOLIPOPROTEIN E3 at only one residue 112 (cysteine is replaced by arginine), and exhibits a lower resistance to denaturation and greater propensity to form folded intermediates. Apo E4 is a risk factor for ALZHEIMER DISEASE and CARDIOVASCULAR DISEASES.Apolipoprotein E3: A 34-kDa glycosylated protein. A major and most common isoform of apolipoprotein E. Therefore, it is also known as apolipoprotein E (ApoE). In human, Apo E3 is a 299-amino acid protein with a cysteine at the 112 and an arginine at the 158 position. It is involved with the transport of TRIGLYCERIDES; PHOSPHOLIPIDS; CHOLESTEROL; and CHOLESTERYL ESTERS in and out of the cells.Apolipoprotein A-II: The second most abundant protein component of HIGH DENSITY LIPOPROTEINS or HDL. It has a high lipid affinity and is known to displace APOLIPOPROTEIN A-I from HDL particles and generates a stable HDL complex. ApoA-II can modulate the activation of LECITHIN CHOLESTEROL ACYLTRANSFERASE in the presence of APOLIPOPROTEIN A-I, thus affecting HDL metabolism.Lipoprotein Lipase: An enzyme of the hydrolase class that catalyzes the reaction of triacylglycerol and water to yield diacylglycerol and a fatty acid anion. The enzyme hydrolyzes triacylglycerols in chylomicrons, very-low-density lipoproteins, low-density lipoproteins, and diacylglycerols. It occurs on capillary endothelial surfaces, especially in mammary, muscle, and adipose tissue. Genetic deficiency of the enzyme causes familial hyperlipoproteinemia Type I. (Dorland, 27th ed) EC, LDL: A class of lipoproteins of small size (18-25 nm) and light (1.019-1.063 g/ml) particles with a core composed mainly of CHOLESTEROL ESTERS and smaller amounts of TRIGLYCERIDES. The surface monolayer consists mostly of PHOSPHOLIPIDS, a single copy of APOLIPOPROTEIN B-100, and free cholesterol molecules. The main LDL function is to transport cholesterol and cholesterol esters to extrahepatic tissues.Apolipoproteins A: Structural proteins of the alpha-lipoproteins (HIGH DENSITY LIPOPROTEINS), including APOLIPOPROTEIN A-I and APOLIPOPROTEIN A-II. They can modulate the activity of LECITHIN CHOLESTEROL ACYLTRANSFERASE. These apolipoproteins are low in atherosclerotic patients. They are either absent or present in extremely low plasma concentration in TANGIER DISEASE.Hypolipidemic Agents: Substances that lower the levels of certain LIPIDS in the BLOOD. They are used to treat HYPERLIPIDEMIAS.Apolipoprotein B-48: A 241-kDa protein synthesized only in the INTESTINES. It serves as a structural protein of CHYLOMICRONS. Its exclusive association with chylomicron particles provides an indicator of intestinally derived lipoproteins in circulation. Apo B-48 is a shortened form of apo B-100 and lacks the LDL-receptor region.Apolipoprotein E2: One of three major isoforms of apolipoprotein E. In humans, Apo E2 differs from APOLIPOPROTEIN E3 at one residue 158 where arginine is replaced by cysteine (R158--C). In contrast to Apo E3, Apo E2 displays extremely low binding affinity for LDL receptors (RECEPTORS, LDL) which mediate the internalization and catabolism of lipoprotein particles in liver cells. ApoE2 allelic homozygosity is associated with HYPERLIPOPROTEINEMIA TYPE III.Lipids: A generic term for fats and lipoids, the alcohol-ether-soluble constituents of protoplasm, which are insoluble in water. They comprise the fats, fatty oils, essential oils, waxes, phospholipids, glycolipids, sulfolipids, aminolipids, chromolipids (lipochromes), and fatty acids. (Grant & Hackh's Chemical Dictionary, 5th ed)Liver: A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.Dietary Fats: Fats present in food, especially in animal products such as meat, meat products, butter, ghee. They are present in lower amounts in nuts, seeds, and avocados.Apoprotein(a): A large and highly glycosylated protein constituent of LIPOPROTEIN (A). It has very little affinity for lipids but forms disulfide-linkage to APOLIPOPROTEIN B-100. Apoprotein(a) has SERINE PROTEINASE activity and can be of varying sizes from 400- to 800-kDa. It is homologous to PLASMINOGEN and is known to modulate THROMBOSIS and FIBRINOLYSIS.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Hyperlipoproteinemias: Conditions with abnormally elevated levels of LIPOPROTEINS in the blood. They may be inherited, acquired, primary, or secondary. Hyperlipoproteinemias are classified according to the pattern of lipoproteins on electrophoresis or ultracentrifugation.