Somites: Paired, segmented masses of MESENCHYME located on either side of the developing spinal cord (neural tube). Somites derive from PARAXIAL MESODERM and continue to increase in number during ORGANOGENESIS. Somites give rise to SKELETON (sclerotome); MUSCLES (myotome); and DERMIS (dermatome).Mesoderm: The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube.Notochord: A cartilaginous rod of mesodermal cells at the dorsal midline of all CHORDATE embryos. In lower vertebrates, notochord is the backbone of support. In the higher vertebrates, notochord is a transient structure, and segments of the vertebral column will develop around it. Notochord is also a source of midline signals that pattern surrounding tissues including the NEURAL TUBE development.Chick Embryo: The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching.Body Patterning: The processes occurring in early development that direct morphogenesis. They specify the body plan ensuring that cells will proceed to differentiate, grow, and diversify in size and shape at the correct relative positions. Included are axial patterning, segmentation, compartment specification, limb position, organ boundary patterning, blood vessel patterning, etc.Quail: Common name for two distinct groups of BIRDS in the order GALLIFORMES: the New World or American quails of the family Odontophoridae and the Old World quails in the genus COTURNIX, family Phasianidae.Coturnix: A genus of BIRDS in the family Phasianidae, order GALLIFORMES, containing the common European and other Old World QUAIL.Gene Expression Regulation, Developmental: Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action during the developmental stages of an organism.In Situ Hybridization: A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes.Myogenic Regulatory Factor 5: A SKELETAL MUSCLE-specific transcription factor that contains a basic HELIX-LOOP-HELIX MOTIF. It plays an essential role in MUSCLE DEVELOPMENT.Zebrafish: An exotic species of the family CYPRINIDAE, originally from Asia, that has been introduced in North America. They are used in embryological studies and to study the effects of certain chemicals on development.Zebrafish Proteins: Proteins obtained from the ZEBRAFISH. Many of the proteins in this species have been the subject of studies involving basic embryological development (EMBRYOLOGY).Morphogenesis: The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.Embryo, Nonmammalian: The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO.MyoD Protein: A myogenic regulatory factor that controls myogenesis. Though it is not clear how its function differs from the other myogenic regulatory factors, MyoD appears to be related to fusion and terminal differentiation of the muscle cell.Paired Box Transcription Factors: A family of transcription factors that control EMBRYONIC DEVELOPMENT within a variety of cell lineages. They are characterized by a highly conserved paired DNA-binding domain that was first identified in DROSOPHILA segmentation genes.Embryonic Induction: The complex processes of initiating CELL DIFFERENTIATION in the embryo. The precise regulation by cell interactions leads to diversity of cell types and specific pattern of organization (EMBRYOGENESIS).Neural Crest: The two longitudinal ridges along the PRIMITIVE STREAK appearing near the end of GASTRULATION during development of nervous system (NEURULATION). The ridges are formed by folding of NEURAL PLATE. Between the ridges is a neural groove which deepens as the fold become elevated. When the folds meet at midline, the groove becomes a closed tube, the NEURAL TUBE.Embryonic and Fetal Development: Morphological and physiological development of EMBRYOS or FETUSES.Extremities: The farthest or outermost projections of the body, such as the HAND and FOOT.Basic Helix-Loop-Helix Transcription Factors: A family of DNA-binding transcription factors that contain a basic HELIX-LOOP-HELIX MOTIF.Avian Proteins: Proteins obtained from species of BIRDS.Gastrula: The developmental stage that follows BLASTULA or BLASTOCYST. It is characterized by the morphogenetic cell movements including invagination, ingression, and involution. Gastrulation begins with the formation of the PRIMITIVE STREAK, and ends with the formation of three GERM LAYERS, the body plan of the mature organism.Ectoderm: The outer of the three germ layers of an embryo.Receptors, Notch: A family of conserved cell surface receptors that contain EPIDERMAL GROWTH FACTOR repeats in their extracellular domain and ANKYRIN repeats in their cytoplasmic domains. The cytoplasmic domain of notch receptors is released upon ligand binding and translocates to the CELL NUCLEUS where it acts as transcription factor.Chimera: An individual that contains cell populations derived from different zygotes.Nervous System: The entire nerve apparatus, composed of a central part, the brain and spinal cord, and a peripheral part, the cranial and spinal nerves, autonomic ganglia, and plexuses. (Stedman, 26th ed)Muscle Development: Developmental events leading to the formation of adult muscular system, which includes differentiation of the various types of muscle cell precursors, migration of myoblasts, activation of myogenesis and development of muscle anchorage.Limb Buds: Distinct regions of mesenchymal outgrowth at both flanks of an embryo during the SOMITE period. Limb buds, covered by ECTODERM, give rise to forelimb, hindlimb, and eventual functional limb structures. Limb bud cultures are used to study CELL DIFFERENTIATION; ORGANOGENESIS; and MORPHOGENESIS.Muscles: Contractile tissue that produces movement in animals.Hedgehog Proteins: A family of intercellular signaling proteins that play and important role in regulating the development of many TISSUES and organs. Their name derives from the observation of a hedgehog-like appearance in DROSOPHILA embryos with genetic mutations that block their action.Glycosyltransferases: Enzymes that catalyze the transfer of glycosyl groups to an acceptor. Most often another carbohydrate molecule acts as an acceptor, but inorganic phosphate can also act as an acceptor, such as in the case of PHOSPHORYLASES. Some of the enzymes in this group also catalyze hydrolysis, which can be regarded as transfer of a glycosyl group from the donor to water. Subclasses include the HEXOSYLTRANSFERASES; PENTOSYLTRANSFERASES; SIALYLTRANSFERASES; and those transferring other glycosyl groups. EC 2.4.Embryo, Mammalian: The entity of a developing mammal (MAMMALS), generally from the cleavage of a ZYGOTE to the end of embryonic differentiation of basic structures. For the human embryo, this represents the first two months of intrauterine development preceding the stages of the FETUS.Spine: The spinal or vertebral column.Ribs: A set of twelve curved bones which connect to the vertebral column posteriorly, and terminate anteriorly as costal cartilage. Together, they form a protective cage around the internal thoracic organs.Embryonic Development: Morphological and physiological development of EMBRYOS.Receptor, EphA4: An eph family receptor found in variety of tissues including BRAIN. During embryogenesis, EphA4 receptor exhibits a diverse spatial and temporal patterns of expression suggesting its role in multiple developmental processes.Transcription Factors: Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process.TailHomeodomain Proteins: Proteins encoded by homeobox genes (GENES, HOMEOBOX) that exhibit structural similarity to certain prokaryotic and eukaryotic DNA-binding proteins. Homeodomain proteins are involved in the control of gene expression during morphogenesis and development (GENE EXPRESSION REGULATION, DEVELOPMENTAL).Tissue Transplantation: Transference of tissue within an individual, between individuals of the same species, or between individuals of different species.Xenopus Proteins: Proteins obtained from various species of Xenopus. Included here are proteins from the African clawed frog (XENOPUS LAEVIS). Many of these proteins have been the subject of scientific investigations in the area of MORPHOGENESIS and development.Cell Differentiation: Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.Fibroblast Growth Factor 8: A fibroblast growth factor that preferentially activates FIBROBLAST GROWTH FACTOR RECEPTOR 4. It was initially identified as an androgen-induced growth factor and plays a role in regulating growth of human BREAST NEOPLASMS and PROSTATIC NEOPLASMS.Cleavage Stage, Ovum: The earliest developmental stage of a fertilized ovum (ZYGOTE) during which there are several mitotic divisions within the ZONA PELLUCIDA. Each cleavage or segmentation yields two BLASTOMERES of about half size of the parent cell. This cleavage stage generally covers the period up to 16-cell MORULA.Myogenin: A myogenic regulatory factor that controls myogenesis. Myogenin is induced during differentiation of every skeletal muscle cell line that has been investigated, in contrast to the other myogenic regulatory factors that only appear in certain cell types.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Helix-Loop-Helix Motifs: Recurring supersecondary structures characterized by 20 amino acids folding into two alpha helices connected by a non-helical "loop" segment. They are found in many sequence-specific DNA-BINDING PROTEINS and in CALCIUM-BINDING PROTEINS.Biological Clocks: The physiological mechanisms that govern the rhythmic occurrence of certain biochemical, physiological, and behavioral phenomena.Trans-Activators: Diffusible gene products that act on homologous or heterologous molecules of viral or cellular DNA to regulate the expression of proteins.Wnt3 Protein: A Wnt protein subtype that plays a role in cell-cell signaling during EMBRYONIC DEVELOPMENT and the morphogenesis of the developing NEURAL TUBE. Defects in Wnt3 protein are associated with autosomal recessive tetra-AMELIA in humans.Wnt Proteins: Wnt proteins are a large family of secreted glycoproteins that play essential roles in EMBRYONIC AND FETAL DEVELOPMENT, and tissue maintenance. They bind to FRIZZLED RECEPTORS and act as PARACRINE PROTEIN FACTORS to initiate a variety of SIGNAL TRANSDUCTION PATHWAYS. The canonical Wnt signaling pathway stabilizes the transcriptional coactivator BETA CATENIN.Signal Transduction: The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.DNA-Binding Proteins: Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases.Fetal Proteins: Proteins that are preferentially expressed or upregulated during FETAL DEVELOPMENT.Rhombencephalon: The posterior of the three primitive cerebral vesicles of an embryonic brain. It consists of myelencephalon, metencephalon, and isthmus rhombencephali from which develop the major BRAIN STEM components, such as MEDULLA OBLONGATA from the myelencephalon, CEREBELLUM and PONS from the metencephalon, with the expanded cavity forming the FOURTH VENTRICLE.Myogenic Regulatory Factors: A family of muscle-specific transcription factors which bind to DNA in control regions and thus regulate myogenesis. All members of this family contain a conserved helix-loop-helix motif which is homologous to the myc family proteins. These factors are only found in skeletal muscle. Members include the myoD protein (MYOD PROTEIN); MYOGENIN; myf-5, and myf-6 (also called MRF4 or herculin).Cell Movement: The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell.T-Box Domain Proteins: Proteins containing a region of conserved sequence, about 200 amino acids long, which encodes a particular sequence specific DNA binding domain (the T-box domain). These proteins are transcription factors that control developmental pathways. The prototype of this family is the mouse Brachyury (or T) gene product.Carbocyanines: Compounds that contain three methine groups. They are frequently used as cationic dyes used for differential staining of biological materials.Bone Morphogenetic Proteins: Bone-growth regulatory factors that are members of the transforming growth factor-beta superfamily of proteins. They are synthesized as large precursor molecules which are cleaved by proteolytic enzymes. The active form can consist of a dimer of two identical proteins or a heterodimer of two related bone morphogenetic proteins.Genes, Homeobox: Genes that encode highly conserved TRANSCRIPTION FACTORS that control positional identity of cells (BODY PATTERNING) and MORPHOGENESIS throughout development. Their sequences contain a 180 nucleotide sequence designated the homeobox, so called because mutations of these genes often results in homeotic transformations, in which one body structure replaces another. The proteins encoded by homeobox genes are called HOMEODOMAIN PROTEINS.Xenopus laevis: The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals.Muscle Proteins: The protein constituents of muscle, the major ones being ACTINS and MYOSINS. More than a dozen accessory proteins exist including TROPONIN; TROPOMYOSIN; and DYSTROPHIN.Fibroblast Growth Factors: A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family.Proteins: Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein.Vertebrates: Animals having a vertebral column, members of the phylum Chordata, subphylum Craniata comprising mammals, birds, reptiles, amphibians, and fishes.Chordata, Nonvertebrate: A portion of the animal phylum Chordata comprised of the subphyla CEPHALOCHORDATA; UROCHORDATA, and HYPEROTRETI, but not including the Vertebrata (VERTEBRATES). It includes nonvertebrate animals having a NOTOCHORD during some developmental stage.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Muscle, Skeletal: A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles.Endoderm: The inner of the three germ layers of an embryo.Neurulation: An early embryonic developmental process of CHORDATES that is characterized by morphogenic movements of ECTODERM resulting in the formation of the NEURAL PLATE; the NEURAL CREST; and the NEURAL TUBE. Improper closure of the NEURAL GROOVE results in congenital NEURAL TUBE DEFECTS.