A family of neurotransmitter transporter proteins that are INTEGRAL MEMBRANE PROTEINS of the LIPID BILAYER of SECRETORY VESICLES. They are ANTIPORTERS that exchange vesicular PROTONS for cytoplasmic NEUROTRANSMITTER and play an essential role in regulating neurotransmission.
Membrane transport proteins found predominately in NEURONS and neuroendocrine cells that facilitate neurotransmitter transport. They include two distinct families of proteins that transport NEUROTRANSMITTERS across the PLASMA MEMBRANE and that transport NEUROTRANSMITTERS into SECRETORY VESICLES.
A family of neurotransmitter transporter proteins that facilitate NEUROTRANSMITTER reuptake into PRESYNAPTIC TERMINALS. They may play a role in regulating the intensity and duration of neurotransmission.
Substances used for their pharmacological actions on any aspect of neurotransmitter systems. Neurotransmitter agents include agonists, antagonists, degradation inhibitors, uptake inhibitors, depleters, precursors, and modulators of receptor function.
Membrane proteins whose primary function is to facilitate the transport of molecules across a biological membrane. Included in this broad category are proteins involved in active transport (BIOLOGICAL TRANSPORT, ACTIVE), facilitated transport and ION CHANNELS.
A broad category of membrane transport proteins that specifically transport FREE FATTY ACIDS across cellular membranes. They play an important role in LIPID METABOLISM in CELLS that utilize free fatty acids as an energy source.
The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments.
The movement of materials across cell membranes and epithelial layers against an electrochemical gradient, requiring the expenditure of metabolic energy.
Transport proteins that carry specific substances in the blood or across cell membranes.
A large group of membrane transport proteins that shuttle MONOSACCHARIDES across CELL MEMBRANES.
Membrane proteins whose primary function is to facilitate the transport of positively charged molecules (cations) across a biological membrane.
The movement of ions across energy-transducing cell membranes. Transport can be active, passive or facilitated. Ions may travel by themselves (uniport), or as a group of two or more ions in the same (symport) or opposite (antiport) directions.
Membrane proteins whose primary function is to facilitate the transport of negatively charged molecules (anions) across a biological membrane.
The process of moving proteins from one cellular compartment (including extracellular) to another by various sorting and transport mechanisms such as gated transport, protein translocation, and vesicular transport.
The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3)