A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION.
A keratin subtype that includes keratins that are generally larger and less acidic that TYPE I KERATINS. Type II keratins combine with type I keratins to form keratin filaments.
Keratins that are specific for hard tissues such as HAIR; NAILS; and the filiform papillae of the TONGUE.
A keratin subtype that includes keratins that are generally smaller and more acidic that TYPE II KERATINS. Type I keratins combine with type II keratins to form keratin filaments.
A type II keratin found associated with KERATIN-18 in simple, or predominately single layered, internal epithelia.
Cytoplasmic filaments intermediate in diameter (about 10 nanometers) between the microfilaments and the microtubules. They may be composed of any of a number of different proteins and form a ring around the cell nucleus.
A type I keratin that is found associated with the KERATIN-5 in the internal stratified EPITHELIUM. Mutations in the gene for keratin-14 are associated with EPIDERMOLYSIS BULLOSA SIMPLEX.
A type I keratin that is found associated with the KERATIN-1 in terminally differentiated epidermal cells such as those that form the stratum corneum. Mutations in the genes that encode keratin-10 have been associated with HYPERKERATOSIS, EPIDERMOLYTIC.
A form of epidermolysis bullosa characterized by serous bullae that heal without scarring. Mutations in the genes that encode KERATIN-5 and KERATIN-14 have been associated with several subtypes of epidermolysis bullosa simplex.
Interferon secreted by leukocytes, fibroblasts, or lymphoblasts in response to viruses or interferon inducers other than mitogens, antigens, or allo-antigens. They include alpha- and beta-interferons (INTERFERON-ALPHA and INTERFERON-BETA).
A type II keratin that is found associated with the KERATIN-10 in terminally differentiated epidermal cells such as those that form the stratum corneum. Mutations in the genes that encode keratin-1 have been associated with HYPERKERATOSIS, EPIDERMOLYTIC.
A form of congenital ichthyosis inherited as an autosomal dominant trait and characterized by ERYTHRODERMA and severe hyperkeratosis. It is manifested at birth by blisters followed by the appearance of thickened, horny, verruciform scales over the entire body, but accentuated in flexural areas. Mutations in the genes that encode KERATIN-1 and KERATIN-10 have been associated with this disorder.
The most common form of fibrillar collagen. It is a major constituent of bone (BONE AND BONES) and SKIN and consists of a heterotrimer of two alpha1(I) and one alpha2(I) chains.
A type II keratin that is found associated with the KERATIN-14 in the internal stratified EPITHELIUM. Mutations in the gene for keratin-5 are associated with EPIDERMOLYSIS BULLOSA SIMPLEX.
The external, nonvascular layer of the skin. It is made up, from within outward, of five layers of EPITHELIUM: (1) basal layer (stratum basale epidermidis); (2) spinous layer (stratum spinosum epidermidis); (3) granular layer (stratum granulosum epidermidis); (4) clear layer (stratum lucidum epidermidis); and (5) horny layer (stratum corneum epidermidis).
A type I keratin found associated with KERATIN-8 in simple, or predominately single layered, internal epithelia.
Epidermal cells which synthesize keratin and undergo characteristic changes as they move upward from the basal layers of the epidermis to the cornified (horny) layer of the skin. Successive stages of differentiation of the keratinocytes forming the epidermal layers are basal cell, spinous or prickle cell, and the granular cell.
The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
A filament-like structure consisting of a shaft which projects to the surface of the SKIN from a root which is softer than the shaft and lodges in the cavity of a HAIR FOLLICLE. It is found on most surfaces of the body.
A type I keratin expressed in a variety of EPITHELIUM, including the ESOPHAGUS, the TONGUE, the HAIR FOLLICLE and NAILS. Keratin-16 is normally found associated with KERATIN-6. Mutations in the gene for keratin-6 have been associated with PACHYONYCHIA CONGENITA, TYPE 1.
Filaments 7-11 nm in diameter found in the cytoplasm of all cells. Many specific proteins belong to this group, e.g., desmin, vimentin, prekeratin, decamin, skeletin, neurofilin, neurofilament protein, and glial fibrillary acid protein.
Group of mostly hereditary disorders characterized by thickening of the palms and soles as a result of excessive keratin formation leading to hypertrophy of the stratum corneum (hyperkeratosis).
A type I keratin found associated with KERATIN-6 in rapidly proliferating squamous epithelial tissue. Mutations in the gene for keratin-17 have been associated with PACHYONYCHIA CONGENITA, TYPE 2.
A type II keratin found expressed in the upper spinous layer of epidermal KERATINOCYTES. Mutations in genes that encode keratin-2A have been associated with ICHTHYOSIS BULLOSA OF SIEMENS.
One or more layers of EPITHELIAL CELLS, supported by the basal lamina, which covers the inner or outer surfaces of the body.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
A type I keratin that is found associated with the KERATIN-4 in the internal stratified EPITHELIUM. Defects in gene for keratin 13 cause HEREDITARY MUCOSAL LEUKOKERATOSIS.
A tube-like invagination of the EPIDERMIS from which the hair shaft develops and into which SEBACEOUS GLANDS open. The hair follicle is lined by a cellular inner and outer root sheath of epidermal origin and is invested with a fibrous sheath derived from the dermis. (Stedman, 26th ed) Follicles of very long hairs extend into the subcutaneous layer of tissue under the SKIN.
Highly keratinized processes that are sharp and curved, or flat with pointed margins. They are found especially at the end of the limbs in certain animals.
A type I keratin found in the basal layer of the adult epidermis and in other stratified epithelia.
Diseases affecting the orderly growth and persistence of hair.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
A type of junction that attaches one cell to its neighbor. One of a number of differentiated regions which occur, for example, where the cytoplasmic membranes of adjacent epithelial cells are closely apposed. It consists of a circular region of each membrane together with associated intracellular microfilaments and an intercellular material which may include, for example, mucopolysaccharides. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990; Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed)
A type II keratin found associated with KERATIN-16 or KERATIN-17 in rapidly proliferating squamous epithelial tissue. Mutations in gene for keratin-6A and keratin-6B have been associated with PACHYONYCHIA CONGENITA, TYPE 1 and PACHYONYCHIA CONGENITA, TYPE 2 respectively.
Flat keratinous structures found on the skin surface of birds. Feathers are made partly of a hollow shaft fringed with barbs. They constitute the plumage.
Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others.
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
An intermediate filament protein found in most differentiating cells, in cells grown in tissue culture, and in certain fully differentiated cells. Its insolubility suggests that it serves a structural function in the cytoplasm. MW 52,000.
A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH).
A group of inherited ectodermal dysplasias whose most prominent clinical feature is hypertrophic nail dystrophy resulting in PACHYONYCHIA. Several specific subtypes of pachyonychia congenita have been associated with mutations in genes that encode KERATINS.
Test for tissue antigen using either a direct method, by conjugation of antibody with fluorescent dye (FLUORESCENT ANTIBODY TECHNIQUE, DIRECT) or an indirect method, by formation of antigen-antibody complex which is then labeled with fluorescein-conjugated anti-immunoglobulin antibody (FLUORESCENT ANTIBODY TECHNIQUE, INDIRECT). The tissue is then examined by fluorescence microscopy.
RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm.
Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells.
One of the two types of ACTIVIN RECEPTORS or activin receptor-like kinases (ALK'S). There are several type I activin receptors. The major active ones are ALK-2 (ActR-IA) and ALK-4 (ActR-IB).
The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm.
Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs.
A type I keratin that is found associated with the KERATIN-3 in the CORNEA and is regarded as a marker for corneal-type epithelial differentiation. Mutations in the gene for keratin-12 have been associated with MEESMANN CORNEAL EPITHELIAL DYSTROPHY.
A genus of the family Heteromyidae which contains 22 species. Their physiology is adapted for the conservation of water, and they seldom drink water. They are found in arid or desert habitats and travel by hopping on their hind limbs.
A type II keratin found predominantly expressed in the terminally differentiated EPIDERMIS of palms and soles. Mutations in the gene for keratin 9 are associated with KERATODERMA, PALMOPLANTAR, EPIDERMOLYTIC.
Desmoplakins are cytoskeletal linker proteins that anchor INTERMEDIATE FILAMENTS to the PLASMA MEMBRANE at DESMOSOMES.
Established cell cultures that have the potential to propagate indefinitely.
An autosomal dominant hereditary skin disease characterized by epidermolytic hyperkeratosis that is strictly confined to the palms and soles. It has been associated with mutations in the gene that codes for KERATIN-9.
A biosynthetic precursor of collagen containing additional amino acid sequences at the amino-terminal and carboxyl-terminal ends of the polypeptide chains.
Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN.
Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation.
A ubiquitously expressed heterodimeric receptor that is specific for both INTERFERON-ALPHA and INTERFERON-BETA. It is composed of two subunits referred to as IFNAR1 and IFNAR2. The IFNAR2 subunit is believed to serve as the ligand-binding chain; however both chains are required for signal transduction. The interferon alpha-beta receptor signals through the action of JANUS KINASES such as the TYK2 KINASE.
Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
A type I keratin found associated with KERATIN-7 in ductal epithelia and gastrointestinal epithelia.
Diseases of the nail plate and tissues surrounding it. The concept is limited to primates.
The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment.
Cytoplasmic hyaline inclusions in HEPATOCYTES. They are associated with ALCOHOLIC STEATOHEPATITIS and non-alcoholic STEATOHEPATITIS, but are also present in benign and malignant hepatocellular neoplasms, and metabolic, toxic, and chronic cholestatic LIVER DISEASES.
The sum of the weight of all the atoms in a molecule.
Deformities in nail structure or appearance, including hypertrophy, splitting, clubbing, furrowing, etc. Genetic diseases such as PACHYONYCHIA CONGENITA can result in malformed nails.
The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION.
An autosomal dominant form of hereditary corneal dystrophy due to a defect in cornea-specific KERATIN formation. Mutations in the genes that encode KERATIN-3 and KERATIN-12 have been linked to this disorder.
'Skin diseases' is a broad term for various conditions affecting the skin, including inflammatory disorders, infections, benign and malignant tumors, congenital abnormalities, and degenerative diseases, which can cause symptoms such as rashes, discoloration, eruptions, lesions, itching, or pain.
A circumscribed benign epithelial tumor projecting from the surrounding surface; more precisely, a benign epithelial neoplasm consisting of villous or arborescent outgrowths of fibrovascular stroma covered by neoplastic cells. (Stedman, 25th ed)
Enzyme systems containing three different subunits and requiring ATP, S-adenosylmethionine, and magnesium for endonucleolytic activity to give random double-stranded fragments with terminal 5'-phosphates. They function also as DNA-dependent ATPases and modification methylases, catalyzing the reactions of EC 2.1.1.72 and EC 2.1.1.73 with similar site-specificity. The systems recognize specific short DNA sequences and cleave at sites remote from the recognition sequence. Enzymes from different microorganisms with the same specificity are called isoschizomers. EC 3.1.21.3.
Keratins that form into a beta-pleated sheet structure. They are principle constituents of the corneous material of the carapace and plastron of turtles, the epidermis of snakes and the feathers of birds.
The hair of SHEEP or other animals that is used for weaving.
An antifungal agent used in the treatment of TINEA infections.
The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway.
Histochemical localization of immunoreactive substances using labeled antibodies as reagents.
Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes.