An enzyme that plays a role in the GLUTAMATE and butanoate metabolism pathways by catalyzing the oxidation of succinate semialdehyde to SUCCINATE using NAD+ as a coenzyme. Deficiency of this enzyme, causes 4-hydroxybutyricaciduria, a rare inborn error in the metabolism of the neurotransmitter 4-aminobutyric acid (GABA).
An enzyme that plays a role in the VALINE; LEUCINE; and ISOLEUCINE catabolic pathways by catalyzing the oxidation of 2-methyl-3-oxopropanate to propanoyl-CoA using NAD+ as a coenzyme. Methylmalonate semialdehyde dehydrogenase deficiency is characterized by elevated BETA-ALANINE and 3-hydropropionic acid.
Oxidoreductases that are specific for ALDEHYDES.
An enzyme that catalyzes the conversion of L-aspartate 4-semialdehyde, orthophosphate, and NADP+ to yield L-4-aspartyl phosphate and NADPH. EC 1.2.1.11.
Brain disorders resulting from inborn metabolic errors, primarily from enzymatic defects which lead to substrate accumulation, product reduction, or increase in toxic metabolites through alternate pathways. The majority of these conditions are familial, however spontaneous mutation may also occur in utero.
An enzyme that converts brain gamma-aminobutyric acid (GAMMA-AMINOBUTYRIC ACID) into succinate semialdehyde, which can be converted to succinic acid and enter the citric acid cycle. It also acts on beta-alanine. EC 2.6.1.19.
Hydroxybutyrate Dehydrogenase is an enzyme involved in the metabolism of certain acids, specifically catalyzing the reversible conversion of D-3-hydroxybutyrate to acetoacetate.
An NAD+ dependent enzyme that catalyzes the oxidation of 2-aminomuconate 6-semialdehyde to 2-aminomuconate.
The sodium salt of 4-hydroxybutyric acid. It is used for both induction and maintenance of ANESTHESIA.
Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure.
Disorders affecting amino acid metabolism. The majority of these disorders are inherited and present in the neonatal period with metabolic disturbances (e.g., ACIDOSIS) and neurologic manifestations. They are present at birth, although they may not become symptomatic until later in life.
An enzyme that oxidizes an aldehyde in the presence of NAD+ and water to an acid and NADH. This enzyme was formerly classified as EC 1.1.1.70.
An enzyme that catalyzes the conversion of L-glutamate and water to 2-oxoglutarate and NH3 in the presence of NAD+. (From Enzyme Nomenclature, 1992) EC 1.4.1.2.
An NADP+ dependent enzyme that catalyzes the oxidation of L-glutamate 5-semialdehyde to L-glutamyl 5-phosphate. It plays a role in the urea cycle and metabolism of amino groups.
Salts and esters of hydroxybutyric acid.
Derivatives of SUCCINIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a 1,4-carboxy terminated aliphatic structure.
Derivatives of adipic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a 1,6-carboxy terminated aliphatic structure.
Glutarates are organic compounds, specifically carboxylic acids, that contain a five-carbon chain with two terminal carboxyl groups and a central methyl group, playing a role in various metabolic processes, including the breakdown of certain amino acids. They can also refer to their salts or esters. Please note that this definition is concise and may not cover all aspects of glutarates in depth.
A coenzyme composed of ribosylnicotinamide 5'-diphosphate coupled to adenosine 5'-phosphate by pyrophosphate linkage. It is found widely in nature and is involved in numerous enzymatic reactions in which it serves as an electron carrier by being alternately oxidized (NAD+) and reduced (NADH). (Dorland, 27th ed)
A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist.
The most common inhibitory neurotransmitter in the central nervous system.
A genus of gram-negative, aerobic, rod-shaped bacteria widely distributed in nature. Some species are pathogenic for humans, animals, and plants.
Cell-surface proteins that bind glutamate and trigger changes which influence the behavior of cells. Glutamate receptors include ionotropic receptors (AMPA, kainate, and N-methyl-D-aspartate receptors), which directly control ion channels, and metabotropic receptors which act through second messenger systems. Glutamate receptors are the most common mediators of fast excitatory synaptic transmission in the central nervous system. They have also been implicated in the mechanisms of memory and of many diseases.
A non-essential amino acid naturally occurring in the L-form. Glutamic acid is the most common excitatory neurotransmitter in the CENTRAL NERVOUS SYSTEM.
An enzyme that catalyzes the formation of beta-aspartyl phosphate from aspartic acid and ATP. Threonine serves as an allosteric regulator of this enzyme to control the biosynthetic pathway from aspartic acid to threonine. EC 2.7.2.4.
A species of motile, free-living, gram-negative bacteria that occur in the soil. They are aerobic or microaerophilic and are sometimes capable of nitrogen fixation.
The removal of a carboxyl group, usually in the form of carbon dioxide, from a chemical compound.
Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5'-phosphate (NMN) coupled by pyrophosphate linkage to the 5'-phosphate adenosine 2',5'-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed)
A zinc-containing enzyme which oxidizes primary and secondary alcohols or hemiacetals in the presence of NAD. In alcoholic fermentation, it catalyzes the final step of reducing an aldehyde to an alcohol in the presence of NADH and hydrogen.
Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.
Organic compounds containing a carbonyl group in the form -CHO.
Enzymes of the isomerase class that catalyze the transfer of acyl-, phospho-, amino- or other groups from one position within a molecule to another. EC 5.4.
A subclass of enzymes of the transferase class that catalyze the transfer of an amino group from a donor (generally an amino acid) to an acceptor (generally a 2-keto acid). Most of these enzymes are pyridoxyl phosphate proteins. (Dorland, 28th ed) EC 2.6.1.
Enzymes that catalyze the breakage of a carbon-oxygen bond leading to unsaturated products via the removal of water. EC 4.2.1.
The rate dynamics in chemical or physical systems.
The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.
Enzymes that catalyze the dehydrogenation of GLYCERALDEHYDE 3-PHOSPHATE. Several types of glyceraldehyde-3-phosphate-dehydrogenase exist including phosphorylating and non-phosphorylating varieties and ones that transfer hydrogen to NADP and ones that transfer hydrogen to NAD.
A subclass of enzymes which includes all dehydrogenases acting on primary and secondary alcohols as well as hemiacetals. They are further classified according to the acceptor which can be NAD+ or NADP+ (subclass 1.1.1), cytochrome (1.1.2), oxygen (1.1.3), quinone (1.1.5), or another acceptor (1.1.99).
A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.
Cell surface proteins that bind glutamate and act through G-proteins to influence second messenger systems. Several types of metabotropic glutamate receptors have been cloned. They differ in pharmacology, distribution, and mechanisms of action.
S-Acyl coenzyme A. Fatty acid coenzyme A derivatives that are involved in the biosynthesis and oxidation of fatty acids as well as in ceramide formation.
An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37.
Glucose-6-Phosphate Dehydrogenase (G6PD) is an enzyme that plays a critical role in the pentose phosphate pathway, catalyzing the oxidation of glucose-6-phosphate to 6-phosphoglucono-δ-lactone while reducing nicotinamide adenine dinucleotide phosphate (NADP+) to nicotinamide adenine dinucleotide phosphate hydrogen (NADPH), thereby protecting cells from oxidative damage and maintaining redox balance.
A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.
An enzyme of the oxidoreductase class that catalyzes the conversion of isocitrate and NAD+ to yield 2-ketoglutarate, carbon dioxide, and NADH. It occurs in cell mitochondria. The enzyme requires Mg2+, Mn2+; it is activated by ADP, citrate, and Ca2+, and inhibited by NADH, NADPH, and ATP. The reaction is the key rate-limiting step of the citric acid (tricarboxylic) cycle. (From Dorland, 27th ed) (The NADP+ enzyme is EC 1.1.1.42.) EC 1.1.1.41.
The functional hereditary units of BACTERIA.
The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells.
The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.
An essential amino acid. It is often added to animal feed.
A metabolite in the principal biochemical pathway of lysine. It antagonizes neuroexcitatory activity modulated by the glutamate receptor, N-METHYL-D-ASPARTATE; (NMDA).
The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.
A flavoprotein containing oxidoreductase that catalyzes the reduction of lipoamide by NADH to yield dihydrolipoamide and NAD+. The enzyme is a component of several MULTIENZYME COMPLEXES.
A flavoprotein containing oxidoreductase that catalyzes the dehydrogenation of SUCCINATE to fumarate. In most eukaryotic organisms this enzyme is a component of mitochondrial electron transport complex II.
Reversibly catalyze the oxidation of a hydroxyl group of carbohydrates to form a keto sugar, aldehyde or lactone. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.; EC 1.1.2.; and 1.1.99.
An alcohol oxidoreductase which catalyzes the oxidation of L-iditol to L-sorbose in the presence of NAD. It also acts on D-glucitol to form D-fructose. It also acts on other closely related sugar alcohols to form the corresponding sugar. EC 1.1.1.14
The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM.
Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.
Glycerolphosphate Dehydrogenase is an enzyme (EC 1.1.1.8) that catalyzes the reversible conversion of dihydroxyacetone phosphate to glycerol 3-phosphate, using nicotinamide adenine dinucleotide (NAD+) as an electron acceptor in the process.
A class of enzymes that catalyze geometric or structural changes within a molecule to form a single product. The reactions do not involve a net change in the concentrations of compounds other than the substrate and the product.(from Dorland, 28th ed) EC 5.
An enzyme that catalyzes the formation of 2 molecules of glutamate from glutamine plus alpha-ketoglutarate in the presence of NADPH. EC 1.4.1.13.
An enzyme that catalyzes the reduction of aspartic beta-semialdehyde to homoserine, which is the branch point in biosynthesis of methionine, lysine, threonine and leucine from aspartic acid. EC 1.1.1.3.
Proteins found in any species of bacterium.
One of the FLAVORING AGENTS used to impart a meat-like flavor.
In bacteria, a group of metabolically related genes, with a common promoter, whose transcription into a single polycistronic MESSENGER RNA is under the control of an OPERATOR REGION.
The Ketoglutarate Dehydrogenase Complex is a multi-enzyme complex involved in the citric acid cycle, catalyzing the oxidative decarboxylation of alpha-ketoglutarate to succinyl-CoA and CO2, thereby connecting the catabolism of amino acids, carbohydrates, and fats to the generation of energy in the form of ATP.
A glucose dehydrogenase that catalyzes the oxidation of beta-D-glucose to form D-glucono-1,5-lactone, using NAD as well as NADP as a coenzyme.
Enzymes of the oxidoreductase class that catalyze the dehydrogenation of hydroxysteroids. (From Enzyme Nomenclature, 1992) EC 1.1.-.
A family of POTASSIUM and SODIUM-dependent acidic amino acid transporters that demonstrate a high affinity for GLUTAMIC ACID and ASPARTIC ACID. Several variants of this system are found in neuronal tissue.
A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis.
The class of all enzymes catalyzing oxidoreduction reactions. The substrate that is oxidized is regarded as a hydrogen donor. The systematic name is based on donor:acceptor oxidoreductase. The recommended name will be dehydrogenase, wherever this is possible; as an alternative, reductase can be used. Oxidase is only used in cases where O2 is the acceptor. (Enzyme Nomenclature, 1992, p9)
Amine oxidoreductases that use either NAD+ (EC 1.5.1.7) or NADP+ (EC 1.5.1.8) as an acceptor to form L-LYSINE or NAD+ (EC 1.5.1.9) or NADP+ (EC 1.5.1.10) as an acceptor to form L-GLUTAMATE. Deficiency of this enzyme causes HYPERLYSINEMIAS.
An enzyme of the oxidoreductase class that catalyzes the reaction 6-phospho-D-gluconate and NADP+ to yield D-ribulose 5-phosphate, carbon dioxide, and NADPH. The reaction is a step in the pentose phosphate pathway of glucose metabolism. (From Dorland, 27th ed) EC 1.1.1.43.
D-Glucose:1-oxidoreductases. Catalyzes the oxidation of D-glucose to D-glucono-gamma-lactone and reduced acceptor. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.47; EC 1.1.1.118; EC 1.1.1.119 and EC 1.1.99.10.
Catalyze the oxidation of 3-hydroxysteroids to 3-ketosteroids.
Reversibly catalyzes the oxidation of a hydroxyl group of sugar alcohols to form a keto sugar, aldehyde or lactone. Any acceptor except molecular oxygen is permitted. Includes EC 1.1.1.; EC 1.1.2. and EC 1.1.99.
A family of plasma membrane neurotransmitter transporter proteins that couple the uptake of GLUTAMATE with the import of SODIUM ions and PROTONS and the export of POTASSIUM ions. In the CENTRAL NERVOUS SYSTEM they regulate neurotransmission through synaptic reuptake of the excitatory neurotransmitter glutamate. Outside the central nervous system they function as signal mediators and regulators of glutamate metabolism.
Enzymes that catalyze the first step in the beta-oxidation of FATTY ACIDS.
A flavoprotein and iron sulfur-containing oxidoreductase that catalyzes the oxidation of NADH to NAD. In eukaryotes the enzyme can be found as a component of mitochondrial electron transport complex I. Under experimental conditions the enzyme can use CYTOCHROME C GROUP as the reducing cofactor. The enzyme was formerly listed as EC 1.6.2.1.
An enzyme that catalyzes the oxidation of 3-oxopropanoate (malonate semialdehyde) to acetyl COENZYME A. It plays a role in the metabolism of BETA-ALANINE.
A type I G protein-coupled receptor mostly expressed post-synaptic pyramidal cells of the cortex and CENTRAL NERVOUS SYSTEM.
An enzyme that catalyzes the dehydrogenation of inosine 5'-phosphate to xanthosine 5'-phosphate in the presence of NAD. EC 1.1.1.205.
Alcohol oxidoreductases with substrate specificity for LACTIC ACID.
A group of 1,2-benzenediols that contain the general formula R-C6H5O2.
An NAD-dependent glyceraldehyde-3-phosphate dehydrogenase found in the cytosol of eucaryotes. It catalyses the dehydrogenation and phosphorylation of GLYCERALDEHYDE 3-PHOSPHATE to 3-phospho-D-glyceroyl phosphate, which is an important step in the GLYCOLYSIS pathway.
Flavoproteins that catalyze reversibly the reduction of carbon dioxide to formate. Many compounds can act as acceptors, but the only physiologically active acceptor is NAD. The enzymes are active in the fermentation of sugars and other compounds to carbon dioxide and are the key enzymes in obtaining energy when bacteria are grown on formate as the main carbon source. They have been purified from bovine blood. EC 1.2.1.2.
A flavoprotein oxidoreductase that has specificity for medium-chain fatty acids. It forms a complex with ELECTRON TRANSFERRING FLAVOPROTEINS and conveys reducing equivalents to UBIQUINONE.
A class of enzymes that catalyzes the oxidation of 17-hydroxysteroids to 17-ketosteroids. EC 1.1.-.
A family of compounds containing an oxo group with the general structure of 1,5-pentanedioic acid. (From Lehninger, Principles of Biochemistry, 1982, p442)
An enzyme that catalyzes the oxidation of XANTHINE in the presence of NAD+ to form URIC ACID and NADH. It acts also on a variety of other purines and aldehydes.
Tartronates are salts or esters of tartaric acid, which is a crystalline organic acid found in various fruits and used in certain medications as a stabilizing agent or for treating antimony poisoning.
A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).
A compound produced from succinyl-CoA and GLYCINE as an intermediate in heme synthesis. It is used as a PHOTOCHEMOTHERAPY for actinic KERATOSIS.
A ketone oxidoreductase that catalyzes the overall conversion of alpha-keto acids to ACYL-CoA and CO2. The enzyme requires THIAMINE DIPHOSPHATE as a cofactor. Defects in genes that code for subunits of the enzyme are a cause of MAPLE SYRUP URINE DISEASE. The enzyme was formerly classified as EC 1.2.4.3.
An order of CRENARCHAEOTA consisting of aerobic or facultatively aerobic, chemolithotrophic cocci which are extreme thermoacidophiles. They lack peptidoglycan in their cell walls.
The 4-aminomethyl form of VITAMIN B 6. During transamination of amino acids, PYRIDOXAL PHOSPHATE is transiently converted into pyridoxamine phosphate.
The E1 component of the multienzyme PYRUVATE DEHYDROGENASE COMPLEX. It is composed of 2 alpha subunits (pyruvate dehydrogenase E1 alpha subunit) and 2 beta subunits (pyruvate dehydrogenase E1 beta subunit).
A family of vesicular neurotransmitter transporter proteins that were originally characterized as sodium dependent inorganic phosphate cotransporters. Vesicular glutamate transport proteins sequester the excitatory neurotransmitter GLUTAMATE from the CYTOPLASM into SECRETORY VESICLES in exchange for lumenal PROTONS.
Enzymes that reversibly catalyze the oxidation of a 3-hydroxyacyl CoA to 3-ketoacyl CoA in the presence of NAD. They are key enzymes in the oxidation of fatty acids and in mitochondrial fatty acid synthesis.
Oxidoreductases that are specific for KETONES.
Hydroxysteroid dehydrogenases that catalyzes the reversible conversion of CORTISOL to the inactive metabolite CORTISONE. Enzymes in this class can utilize either NAD or NADP as cofactors.
Drugs that bind to but do not activate excitatory amino acid receptors, thereby blocking the actions of agonists.
An enzyme that catalyzes the oxidation of 1-pyrroline-5-carboxylate to L-GLUTAMATE in the presence of NAD. Defects in the enzyme are the cause of hyperprolinemia II.
A glutamate plasma membrane transporter protein found in ASTROCYTES and in the LIVER.
A vesicular glutamate transporter protein that is predominately expressed in the DIENCEPHALON and lower brainstem regions of the CENTRAL NERVOUS SYSTEM.
An oxidoreductase involved in pyrimidine base degradation. It catalyzes the catabolism of THYMINE; URACIL and the chemotherapeutic drug, 5-FLUOROURACIL.
An enzyme that catalyzes the oxidation of UDPglucose to UDPglucuronate in the presence of NAD+. EC 1.1.1.22.
Derivatives of BUTYRIC ACID that include a double bond between carbon 2 and 3 of the aliphatic structure. Included under this heading are a broad variety of acid forms, salts, esters, and amides that include the aminobutryrate structure.
An NAD-dependent enzyme that catalyzes the reversible DEAMINATION of L-ALANINE to PYRUVATE and AMMONIA. The enzyme is needed for growth when ALANINE is the sole CARBON or NITROGEN source. It may also play a role in CELL WALL synthesis because L-ALANINE is an important constituent of the PEPTIDOGLYCAN layer.
Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules.
A disease-producing enzyme deficiency subject to many variants, some of which cause a deficiency of GLUCOSE-6-PHOSPHATE DEHYDROGENASE activity in erythrocytes, leading to hemolytic anemia.
One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter.
A low-affinity 11 beta-hydroxysteroid dehydrogenase found in a variety of tissues, most notably in LIVER; LUNG; ADIPOSE TISSUE; vascular tissue; OVARY; and the CENTRAL NERVOUS SYSTEM. The enzyme acts reversibly and can use either NAD or NADP as cofactors.
A non-essential amino acid present abundantly throughout the body and is involved in many metabolic processes. It is synthesized from GLUTAMIC ACID and AMMONIA. It is the principal carrier of NITROGEN in the body and is an important energy source for many cells.
A vesicular glutamate transporter protein that is predominately expressed in TELENCEPHALON of the BRAIN.
A colorless, flammable liquid used in the manufacture of acetic acid, perfumes, and flavors. It is also an intermediate in the metabolism of alcohol. It has a general narcotic action and also causes irritation of mucous membranes. Large doses may cause death from respiratory paralysis.
A class of ionotropic glutamate receptors characterized by their affinity for the agonist AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid).
Drugs that bind to and activate excitatory amino acid receptors.
A 3-hydroxysteroid dehydrogenase which catalyzes the reversible reduction of the active androgen, DIHYDROTESTOSTERONE to 5 ALPHA-ANDROSTANE-3 ALPHA,17 BETA-DIOL. It also has activity towards other 3-alpha-hydroxysteroids and on 9-, 11- and 15- hydroxyprostaglandins. The enzyme is B-specific in reference to the orientation of reduced NAD or NADPH.
Enzymes that catalyze the addition of a carboxyl group to a compound (carboxylases) or the removal of a carboxyl group from a compound (decarboxylases). EC 4.1.1.
Sugar alcohol dehydrogenases that have specificity for MANNITOL. Enzymes in this category are generally classified according to their preference for a specific reducing cofactor.
Non-heme iron-containing enzymes that incorporate two atoms of OXYGEN into the substrate. They are important in biosynthesis of FLAVONOIDS; GIBBERELLINS; and HYOSCYAMINE; and for degradation of AROMATIC HYDROCARBONS.
Catalyzes the oxidation of catechol to 2-hydroxymuconate semialdehyde in the carbazole and BENZOATE degradation via HYDROXYLATION pathways. It also catalyzes the conversion of 3-methylcatechol to cis, cis-2-hydroxy-6-oxohept-2,4-dienoate in the TOLUENE and XYLENE degradation pathway. This enzyme was formerly characterized as EC 1.13.1.2.
The normality of a solution with respect to HYDROGEN ions; H+. It is related to acidity measurements in most cases by pH = log 1/2[1/(H+)], where (H+) is the hydrogen ion concentration in gram equivalents per liter of solution. (McGraw-Hill Dictionary of Scientific and Technical Terms, 6th ed)
Catalyzes reversibly the oxidation of hydroxyl groups of prostaglandins.
A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity.
A flavoprotein oxidoreductase that has specificity for short-chain fatty acids. It forms a complex with ELECTRON-TRANSFERRING FLAVOPROTEINS and conveys reducing equivalents to UBIQUINONE.
The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
A metalloflavoprotein enzyme involved the metabolism of VITAMIN A, this enzyme catalyzes the oxidation of RETINAL to RETINOIC ACID, using both NAD+ and FAD coenzymes. It also acts on both the 11-trans- and 13-cis-forms of RETINAL.
Derivatives of caproic acid. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain a carboxy terminated six carbon aliphatic structure.
An enzyme that catalyzes the conversion of 3-hydroxyanthranilate to 2-amino-3-carboxymuconate semialdehyde. It was formerly characterized as EC 1.13.1.6.
Malonates are organic compounds containing a malonate group, which is a dicarboxylic acid functional group with the structure -OC(CH2COOH)2, and can form salts or esters known as malonates.
A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances.
A glial type glutamate plasma membrane transporter protein found predominately in ASTROCYTES. It is also expressed in HEART and SKELETAL MUSCLE and in the PLACENTA.
The parts of a macromolecule that directly participate in its specific combination with another molecule.
A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company.
A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15.
The facilitation of a chemical reaction by material (catalyst) that is not consumed by the reaction.
A group of enzymes that catalyze the reversible reduction-oxidation reaction of 20-hydroxysteroids, such as from a 20-ketosteroid to a 20-alpha-hydroxysteroid (EC 1.1.1.149) or to a 20-beta-hydroxysteroid (EC 1.1.1.53).
Pipecolic acids are cyclic amino acids, specifically a derivative of L-lysine, that can function as an indicator of certain metabolic disorders such as lysinuric protein intolerance and maple syrup urine disease.
An high-affinity, NAD-dependent 11-beta-hydroxysteroid dehydrogenase that acts unidirectionally to catalyze the dehydrogenation of CORTISOL to CORTISONE. It is found predominantly in mineralocorticoid target tissues such as the KIDNEY; COLON; SWEAT GLANDS; and the PLACENTA. Absence of the enzyme leads to a fatal form of childhood hypertension termed, APPARENT MINERALOCORTICOID EXCESS SYNDROME.