Loading...
DNA Glycosylases: A family of DNA repair enzymes that recognize damaged nucleotide bases and remove them by hydrolyzing the N-glycosidic bond that attaches them to the sugar backbone of the DNA molecule. The process called BASE EXCISION REPAIR can be completed by a DNA-(APURINIC OR APYRIMIDINIC SITE) LYASE which excises the remaining RIBOSE sugar from the DNA.N-Glycosyl Hydrolases: A class of enzymes involved in the hydrolysis of the N-glycosidic bond of nitrogen-linked sugars.DNA-Formamidopyrimidine Glycosylase: A DNA repair enzyme that is an N-glycosyl hydrolase with specificity for DNA-containing ring-opened N(7)-methylguanine residues.Deoxyribonuclease (Pyrimidine Dimer): An enzyme which catalyzes an endonucleolytic cleavage near PYRIMIDINE DIMERS to produce a 5'-phosphate product. The enzyme acts on the damaged DNA strand, from the 5' side of the damaged site.Uracil-DNA Glycosidase: An enzyme that catalyzes the HYDROLYSIS of the N-glycosidic bond between sugar phosphate backbone and URACIL residue during DNA synthesis.Thymine DNA Glycosylase: An enzyme that removes THYMINE and URACIL bases mispaired with GUANINE through hydrolysis of their N-glycosidic bond. These mispaired nucleotides generally occur through the hydrolytic DEAMINATION of 5-METHYLCYTOSINE to thymine.DNA Repair: The reconstruction of a continuous two-stranded DNA molecule without mismatch from a molecule which contained damaged regions. The major repair mechanisms are excision repair, in which defective regions in one strand are excised and resynthesized using the complementary base pairing information in the intact strand; photoreactivation repair, in which the lethal and mutagenic effects of ultraviolet light are eliminated; and post-replication repair, in which the primary lesions are not repaired, but the gaps in one daughter duplex are filled in by incorporation of portions of the other (undamaged) daughter duplex. Excision repair and post-replication repair are sometimes referred to as "dark repair" because they do not require light.DNA-(Apurinic or Apyrimidinic Site) Lyase: A DNA repair enzyme that catalyses the excision of ribose residues at apurinic and apyrimidinic DNA sites that can result from the action of DNA GLYCOSYLASES. The enzyme catalyzes a beta-elimination reaction in which the C-O-P bond 3' to the apurinic or apyrimidinic site in DNA is broken, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'-phosphate. This enzyme was previously listed under EC 3.1.25.2.Hydantoins: Compounds based on imidazolidine dione. Some derivatives are ANTICONVULSANTS.Pentoxyl: 5-Hydroxymethyl-6-methyl- 2,4-(1H,3H)-pyrimidinedione. Uracil derivative used in combination with toxic antibiotics to lessen their toxicity; also to stimulate leukopoiesis and immunity. Synonyms: pentoksil; hydroxymethylmethyluracil.UracilDeoxyribonuclease IV (Phage T4-Induced): An enzyme which catalyzes the endonucleolytic cleavage of phosphodiester bonds at purinic or apyrimidinic sites (AP-sites) to produce 5'-Phosphooligonucleotide end products. The enzyme prefers single-stranded DNA (ssDNA) and was formerly classified as EC 3.1.4.30.GuanineCarbon-Oxygen Lyases: Enzymes that catalyze the cleavage of a carbon-oxygen bond by means other than hydrolysis or oxidation. EC 4.2.Endodeoxyribonucleases: A group of enzymes catalyzing the endonucleolytic cleavage of DNA. They include members of EC 3.1.21.-, EC 3.1.22.-, EC 3.1.23.- (DNA RESTRICTION ENZYMES), EC 3.1.24.- (DNA RESTRICTION ENZYMES), and EC 3.1.25.-.DNA Damage: Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS.Methanococcales: An order of anaerobic methanogens in the kingdom EURYARCHAEOTA. They are pseudosarcina, coccoid or sheathed rod-shaped and catabolize methyl groups. The cell wall is composed of protein. The order includes one family, METHANOCOCCACEAE. (From Bergey's Manual of Systemic Bacteriology, 1989)Alkylation: The covalent bonding of an alkyl group to an organic compound. It can occur by a simple addition reaction or by substitution of another functional group.ThymineCytosine: A pyrimidine base that is a fundamental unit of nucleic acids.DNA: A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine).Hypoxanthine: A purine and a reaction intermediate in the metabolism of adenosine and in the formation of nucleic acids by the salvage pathway.5-Methylcytosine: A methylated nucleotide base found in eukaryotic DNA. In ANIMALS, the DNA METHYLATION of CYTOSINE to form 5-methylcytosine is found primarily in the palindromic sequence CpG. In PLANTS, the methylated sequence is CpNpGp, where N can be any base.Base Pair Mismatch: The presence of an uncomplimentary base in double-stranded DNA caused by spontaneous deamination of cytosine or adenine, mismatching during homologous recombination, or errors in DNA replication. Multiple, sequential base pair mismatches lead to formation of heteroduplex DNA; (NUCLEIC ACID HETERODUPLEXES).Substrate Specificity: A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts.Escherichia coli: A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc.Adenine: A purine base and a fundamental unit of ADENINE NUCLEOTIDES.Escherichia coli Proteins: Proteins obtained from ESCHERICHIA COLI.DNA Polymerase beta: A DNA repair enzyme that catalyzes DNA synthesis during base excision DNA repair. EC 2.7.7.7.Molecular Sequence Data: Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories.Oligodeoxyribonucleotides: A group of deoxyribonucleotides (up to 12) in which the phosphate residues of each deoxyribonucleotide act as bridges in forming diester linkages between the deoxyribose moieties.Models, Molecular: Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures.Oxidation-Reduction: A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471).Base Sequence: The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence.Oligonucleotides: Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed)Kinetics: The rate dynamics in chemical or physical systems.Amino Acid Sequence: The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION.Thermoproteaceae: A family of THERMOPROTEALES consisting of variable length rigid rods without septa. They grow either chemolithoautotrophically or by sulfur respiration. The four genera are: PYROBACULUM; THERMOPROTEUS; Caldivirga; and Thermocladium. (From Bergey's Manual of Systematic Bacteriology, 2d ed)Mutation: Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations.Binding Sites: The parts of a macromolecule that directly participate in its specific combination with another molecule.Protein Structure, Tertiary: The level of protein structure in which combinations of secondary protein structures (alpha helices, beta sheets, loop regions, and motifs) pack together to form folded shapes called domains. Disulfide bridges between cysteines in two different parts of the polypeptide chain along with other interactions between the chains play a role in the formation and stabilization of tertiary structure. Small proteins usually consist of only one domain but larger proteins may contain a number of domains connected by segments of polypeptide chain which lack regular secondary structure.DNA Adducts: The products of chemical reactions that result in the addition of extraneous chemical groups to DNA.Furans: Compounds with a 5-membered ring of four carbons and an oxygen. They are aromatic heterocycles. The reduced form is tetrahydrofuran.Sequence Alignment: The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms.DNA, Bacterial: Deoxyribonucleic acid that makes up the genetic material of bacteria.Sequence Homology, Amino Acid: The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species.Oxidative Stress: A disturbance in the prooxidant-antioxidant balance in favor of the former, leading to potential damage. Indicators of oxidative stress include damaged DNA bases, protein oxidation products, and lipid peroxidation products (Sies, Oxidative Stress, 1991, pxv-xvi).DNA Methylation: Addition of methyl groups to DNA. DNA methyltransferases (DNA methylases) perform this reaction using S-ADENOSYLMETHIONINE as the methyl group donor.Protein Structure, Secondary: The level of protein structure in which regular hydrogen-bond interactions within contiguous stretches of polypeptide chain give rise to alpha helices, beta strands (which align to form beta sheets) or other types of coils. This is the first folding level of protein conformation.Protein Binding: The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments.Formamides: A group of amides with the general formula of R-CONH2.Spiro Compounds: A group of compounds consisting in part of two rings sharing one atom (usually a carbon) in common.IminesDeoxyadenosines: Adenosine molecules which can be substituted in any position, but are lacking one hydroxyl group in the ribose part of the molecule.