A novel NAD-binding protein revealed by the crystal structure of 2,3-diketo-L-gulonate reductase (YiaK). (65/386)

Escherichia coli YiaK catalyzes the reduction of 2,3-diketo-L-gulonate in the presence of NADH. It belongs to a large family of oxidoreductases that is conserved in archaea, bacteria, and eukaryotes but shows no sequence homology to other proteins. We report here the crystal structures at up to 2.0-A resolution of YiaK alone and in complex with NAD-tartrate. YiaK has a new polypeptide backbone fold and a novel mode of recognizing the NAD cofactor. In addition, NAD is bound in an unusual conformation, at the interface of a dimer of the enzyme. The crystallographic analysis unexpectedly revealed the binding of tartrate in the active site. Enzyme kinetics studies confirm that tartrate and the related D-malate are inhibitors of YiaK. In contrast to most other enzymes where substrate binding produces a more closed conformation, the binding of NAD-tartrate to YiaK produces a more open active site. The free enzyme conformation is incompatible with NAD binding. His(44) is likely the catalytic residue of the enzyme.  (+info)

Transcriptional organization and regulation of the L-idonic acid pathway (GntII system) in Escherichia coli. (66/386)

The genetic organization of the idn genes that encode the pathway for L-idonate catabolism was characterized. The monocistronic idnK gene is transcribed divergently from the idnDOTR genes, which were shown to form an operon. The 215-bp regulatory region between the idnK and idnD genes contains promoters in opposite orientation with transcription start sites that mapped to positions -26 and -29 with respect to the start codons. The regulatory region also contains a single putative IdnR/GntR binding site centered between the two promoters, a CRP binding site upstream of idnD, and an UP element upstream of idnK. The genes of the L-idonate pathway were shown to be under catabolite repression control. Analysis of idnD- and idnK-lacZ fusions in a nonpolar idnD mutant that is unable to interconvert L-idonate and 5-ketogluconate indicated that either compound could induce the pathway. The L-idonate pathway was first characterized as a subsidiary pathway for D-gluconate catabolism (GntII), which is induced by D-gluconate in a GntI (primary gluconate system) mutant. Here we showed that the idnK and idnD operons are induced by D-gluconate in a GntI system mutant, presumably by endogenous formation of 5-ketogluconate from D-gluconate. Thus, the regulation of the GntII system is appropriate for this pathway, which is primarily involved in L-idonate catabolism; the GntII system can be induced by D-gluconate under conditions that block the GntI system.  (+info)

Functional and biochemical characterization of a recombinant Arabidopsis thaliana 3-deoxy-D-manno-octulosonate 8-phosphate synthase. (67/386)

An open reading frame, encoding for KDOPS (3-deoxy-D-manno-octulosonate 8-phosphate synthase), from Arabidopsis thaliana was cloned into a T7-driven expression vector. The protein was overexpressed in Escherichia coli and purified to homogeneity. Recombinant A. thaliana KDOPS, in solution, displays an apparent molecular mass of 76 kDa and a subunit molecular mass of 31.519 kDa. Unlike previously studied bacterial KDOPSs, which are tetrameric, A. thaliana KDOPS appears to be a dimer in solution. The optimum temperature of the enzyme is 65 degrees C and the optimum pH is 7.5, with a broad peak between pH 6.5 and 9.5 showing 90% of maximum activity. The enzyme cannot be inactivated by EDTA or dipicolinic acid treatment, nor it can be activated by a series of bivalent metal ions, suggesting that it is a non-metallo-enzyme, as opposed to the initial prediction that it would be a metallo-enzyme. Kinetic studies showed that the enzyme follows a sequential mechanism with K(m)=3.6 microM for phosphoenolpyruvate and 3.8 microM for D-arabinose 5-phosphate and kcat=5.9 s(-1) at 37 degrees C. On the basis of the characterization of A. thaliana KDOPS and phylogenetic analysis, plant KDOPSs may represent a new, distinct class of KDOPSs.  (+info)

Biosynthesis of a novel 3-deoxy-D-manno-oct-2-ulosonic acid-containing outer core oligosaccharide in the lipopolysaccharide of Klebsiella pneumoniae. (68/386)

The core oligosaccharide region of Klebsiella pneumoniae lipopolysaccharide contains some novel features that distinguish it from the corresponding lipopolysaccharide region in other members of the Enterobacteriaceae family, such as Escherichia coli and Salmonella. The conserved Klebsiella outer core contains the unusual trisaccharide 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo)-(2,6)-GlcN-(1,4)-GalUA. In general, Kdo residues are normally found in the inner core, but in K. pneumoniae, this Kdo residue provides the ligation site for O polysaccharide. The outer core Kdo residue can also be non-stoichiometrically substituted with an l-glycero-d-manno-heptopyranose (Hep) residue, another component more frequently found in the inner core. To understand the genetics and biosynthesis of core oligosaccharide synthesis in Klebsiella, the gene products involved in the addition of the outer core GlcN (WabH), Kdo (WabI), and Hep (WabJ) residues as well as the inner core HepIII residue (WaaQ) were identified. Non-polar mutations were created in each of the genes, and the resulting mutant lipopolysaccharide was analyzed by mass spectrometry. The in vitro glycosyltransferase activity of WabI and WabH was verified. WabI transferred a Kdo residue from CMP-Kdo onto the acceptor lipopolysaccharide. The activated precursor required for GlcN addition has not been identified. However, lysates overexpressing WabH were able to transfer a GlcNAc residue from UDP-GlcNAc onto the acceptor GalUA residue in the outer core.  (+info)

An extracytoplasmic-function sigma factor is involved in a pathway controlling beta-exotoxin I production in Bacillus thuringiensis subsp. thuringiensis strain 407-1. (69/386)

Beta-exotoxin I is an insecticidal nucleotide analogue secreted by various Bacillus thuringiensis strains. In this report, we describe the characterization and transcriptional analysis of a gene cluster, designated sigW-ecfX-ecfY, that is essential for beta-exotoxin I production in B. thuringiensis subsp. thuringiensis strain 407-1. In this strain, the disruption of the sigW cluster resulted in nontoxic culture supernatants. sigW encodes a protein of 177 residues that is 97 and 94% identical to two putative RNA polymerase extracytoplasmic-function-type sigma factors from Bacillus anthracis strain Ames and Bacillus cereus strain ATCC 14579, respectively. It is also 50, 30, and 26% identical to SigW from Clostridium perfringens and SigW and SigX from Bacillus subtilis, respectively. EcfX, encoded by the gene following sigW, significantly repressed the expression of sigW when both genes were overtranscribed, suggesting that it could be the anti-sigma factor of SigW. Following the loss of its curable cry plasmid, strain 407 became unable to synthesize crystal toxins, in contrast to the mutant strain 407-1(Cry-)(Pig+), which overproduced this molecule in the absence of this plasmid. Transcriptional analysis of sigW indicated that this gene was expressed during the stationary phase and only in the 407-1(Cry-)(Pig+) mutant. This suggests that in the wild type-407(Cry+) strain, beta-exotoxin I was produced from determinants located on a cry gene-bearing plasmid and that sigW is able to induce beta-exotoxin I production in B. thuringiensis in the absence of cry gene-bearing plasmids. Although the signal responsible for this activation is unknown, these results indicate that beta-exotoxin I production in B. thuringiensis can be restored or induced via an alternative pathway that requires sigW expression.  (+info)

2'-deoxyribonolactone lesion produces G->A transitions in Escherichia coli. (70/386)

2'-deoxyribonolactone (dL) is a C1'-oxidized abasic site damage generated by a radical attack on DNA. Numerous genotoxic agents have been shown to produce dL including UV and gamma-irradiation, ene-dye antibiotics etc. At present the biological consequences of dL present in DNA have been poorly documented, mainly due to the lack of method for introducing the lesion in oligonucleotides. We have recently designed a synthesis of dL which allowed investigation of the mutagenicity of dL in Escherichia coli by using a genetic reversion assay. The lesion was site-specifically incorporated in a double-stranded bacteriophage vector M13G*1, which detects single-base-pair substitutions at position 141 of the lacZalpha gene by a change in plaque color. In E.coli JM105 the dL-induced reversion frequency was 4.7 x 10(-5), similar to that of the classic abasic site 2'-deoxyribose (dR). Here we report that a dL residue in a duplex DNA codes mainly for thymidine. The processing of dL in vivo was investigated by measuring lesion-induced mutation frequencies in DNA repair deficient E.coli strains. We showed a 32-fold increase in dL-induced reversion rate in AP endonuclease deficient (xth nfo) mutant compared with wild-type strain, indicating that the Xth and Nfo AP endonucleases participate in dL repair in vivo.  (+info)

Imaging using Tc99m-tetrofosmin for the detection of the recurrence of brain tumour: a comparative study with Tc99m-glucoheptonate. (71/386)

BACKGROUND: In the past "blood-brain barrier" agents such as Tc99m-glucoheptonate were routinely used for the diagnosis of brain tumours. Of late, agents used for studying myocardial perfusion namely, Tc99m-tetrofosmin, Thallium-201, and Tc99m-sestamibi have replaced the "blood-brain barrier agents " when imaging is undertaken for the detection of the recurrence of brain tumours. However, the incremental diagnostic information provided by Tc99m-tetrofosmin when compared with a blood brain barrier agent in the diagnosis of recurrent brain tumour has not been evaluated till date. AIMS: The study was carried out to substantiate whether Tc99m-tetrofosmin provides any incremental diagnostic information not provided by the blood brain barrier agent Tc99m-glucoheptonate. MATERIAL AND METHODS: Brain SPECT scans were performed using Tc99m-tetrofosmin and Tc99m-glucoheptonate in 126 patients of recurrent brain tumour. Bio-distribution and uptake properties of both the tracers were analysed by measuring relative uptake of both the tracers in tumour compared to background (T/B ratio), nasopharynx (T/N ratio) and scalp (T/S ratio). STATISTICAL ANALYSIS: Descriptive statistics were calculated for each variable. Pearson's correlation coefficient was applied to see agreement of the continuous variables. Paired t test was used to evaluate the difference between two means. RESULTS: Uptake properties of both the tracers were analysed in 105 patients in whom both Tc99m-tetrofosmin and Tc99m-glucoheptonate showed concentration. The remaining 21 patients in whom the tumour mass did not show Tc99m-tetrofosmin concentration were excluded from the study. Mean T/B ratio, T/N ratio and T/S ratio was 5.83 + 2.09 and 5.99 + 2.26, 0.53 + 0.21 and 0.55 + 0.22 and 1.11 + 0.60 and 1.26 + 0.52 for Tc99m-tetrofosmin and Tc99m-glucoheptonate respectively. No statistically significant difference between T/B ratio and T/N ratio of Tc99m-tetrofosmin and Tc99m-glucoheptonate was found; p values were 0.25 and 0.83 respectively. However there was significant difference (P=0.006) between the T/S ratio of Tc99m-tetrofosmin and that of Tc99m-glucoheptonate. CONCLUSION: Tc99m-tetrofosmin does not provide any incremental diagnostic information not provided by the blood brain barrier agent Tc99m-glucoheptonate.  (+info)

Sinorhizobium meliloti strain 1021 produces a low-molecular-mass capsular polysaccharide that is a homopolymer of 3-deoxy-D-manno-oct-2-ulosonic acid harboring a phospholipid anchor. (72/386)

Sinorhizobium meliloti strain 1021 possesses the particularity to synthesize biologically inefficient capsular polysaccharides (KPS). It has been assumed that this class of compounds is not produced in high-molecular-mass (HMM) forms, even if many genetic analyses show the existence of expression of genes involved in the biosynthesis of capsular polysaccharides. The expression of these genes that are involved in the export of a KPS throughout the membrane and in the attachment of a lipid moiety has never been related to a structurally characterized surface polysaccharide. It is now reported that S. meliloti strain 1021 produces low-molecular-mass polysaccharides (4-4.5 kDa) that are exclusively composed of beta-(2-->7)-linked 3-deoxy-d-manno-oct-2-ulopyranosonic acid (Kdo) residues. These compounds are considered precursor molecules of HMM KPS, whose biosynthesis is arrested in the case of S. meliloti strain 1021. For the first time, the phospholipid anchor of a rhizobial KPS has been found, and its structure could be partially identified-namely, a phosphoglycerol moiety bearing a hydroxy-octacosanoic acid. When compared to other rhizobial KPS (composed of dimeric hexose-Kdo-like sugar repeating units), the Kdo homopolymer described here may explain why a complementation of S. meliloti strain 1021 Exo B mutant with an effective rkpZ gene restoring an active higher KPS size does not completely lead to the fully effective nitrogen fixing phenotype.  (+info)