Bordetella pertussis waaA encodes a monofunctional 2-keto-3-deoxy-D-manno-octulosonic acid transferase that can complement an Escherichia coli waaA mutation. (1/386)

Bordetella pertussis lipopolysaccharide (LPS) contains a single 2-keto-3-deoxy-D-manno-octulosonic acid (Kdo) residue, whereas LPS from Escherichia coli contains at least two. Here we report that B. pertussis waaA encodes an enzyme capable of transferring only a single Kdo during the biosynthesis of LPS and that this activity is sufficient to complement an E. coli waaA mutation.  (+info)

Uptake of 99mTc(5+)-complexes in ischemic myocardial slices and their dissociable ability. (2/386)

AIM: To find how some technetium-complexes to deliver the active species, TcO4(3-), to the target tissue from a dissociable polynuclear Tc5+ species in preserved states in vivo. METHODS: Effect of dissociation ability of the polynuclear Tc5+ complexes on their accumulation in ischemic myocardium was tested. Ability of dissociation as having an appropriate conformation to become biologically functional after entering the blood circulation was tested using a simple dilution method by thin layer chromatography (TLC) analysis. Various degree of ischemic myocardium slices of rat were incubated with 1/100 diluted 99mTc(5+)-succimer, 99mTc(5+)-GH and 99mTc(5+)-PPi. RESULTS: The TLC patterns of 99mTc(5+)-GH and 99mTc(5+)-PPi showed the presence of a fast increasing of free Tc-species as dilution degree increased. The relative radioactivity of peak of free pertechnetate (Rf = 0.85-1.0) with 1:500 dilution was: 99mTc(5+)-succimer 0%, 99mTc(5+)-GH 28.1% +/- 1.3%, and 99mTc(5+)-PPi 46.0% +/- 2.9% respectively. The uptake of the myocardium after ischemia for 3 h was 99mTc(5+)-succimer 420% +/- 110% dose/g tissue, 99mTc(5+)-GH 710% +/- 180% dose/g tissue, and 99mTc(5+)-PPi 1295% +/- 390% dose/g tissue respectively. CONCLUSION: The dissociation and myocardial uptake showed: 99mTc(5+)-succimer < 99mTc(5+)-GH < 99mTc(5+)-PPi, the uptake by the ischemic myocardium is positively correlated to their dissociation.  (+info)

Rat liver contains age-regulated cytosolic 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid (Kdn). (3/386)

Kdn (3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid), a unique deaminated member of the sialic acid family, has emerged as a new building block of glycoconjugates from a wide variety of organisms, ranging from bacteria to mammals. In particular, the presence of Kdn has been demonstrated in different rat organs and tissues, but not in liver. Here we report on the detection and quantitation of Kdn in rat liver and on its variations with postnatal development and aging. We have previously established the optimal conditions for derivatization of Kdn with 1,2-diamino-4, 5-methylene-dioxybenzene (DMB), and detection by reverse-phase HPLC. Analysis of whole liver homogenates and different subcellular fractions reveals that Kdn is fundamentally present in the cytosolic fraction as nucleotide precursor. The expression of Kdn, Neu5Gc, and Neu5Ac changes unevenly with age. While the content of Neu5Ac, the major species, and Neu5Gc decreases to a different extent from newborn to old animals, Kdn content decreases from newborn to trace amounts in adult rats and increases again with aging. Thus, expression of Kdn, Neu5Gc, and Neu5Ac appears to be independently regulated.  (+info)

Structural analysis of the lipopolysaccharide from Chlamydia trachomatis serotype L2. (4/386)

The lipopolysaccharide (LPS) of Chlamydia trachomatis L2 was isolated from tissue culture-grown elementary bodies using a modified phenol/water procedure followed by extraction with phenol/chloroform/light petroleum. From a total of 5 x 10(4) cm2 of infected monolayers, 22.3 mg of LPS were obtained. Compositional analysis indicated the presence of 3-deoxy-D-manno-oct-2-ulopyranosonic acid (Kdo), GlcN, phosphorus, and fatty acids in a molar ratio of 2.8:2:2.1:4.5. Matrix-assisted laser-desorption ionization mass spectrometry performed on the de-O-acylated LPS gave a major molecular ion peak at m/z 1781.1 corresponding to a molecule of 3 Kdo, 2 GlcN, 2 phosphates, and two 3-hydroxyeicosanoic acid residues. The structure of deacylated LPS obtained after successive treatment with hydrazine and potassium hydroxide was determined by 600 MHz NMR spectroscopy as Kdoalpha2-->8Kdoalpha2-->4Kdoalpha2-->6D-GlcpNbeta1 -->6D-GlcpNalpha 1,4'-bisphosphate. These data, together with those published recently on the acylation pattern of chlamydial lipid A (Qureshi, N., Kaltashov, I., Walker, K., Doroshenko, V., Cotter, R. J., Takayama, K, Sievert, T. R., Rice, P. A., Lin, J.-S. L., and Golenbock, D. T. (1997) J. Biol. Chem. 272, 10594-10600) allow us to present for the first time the complete structure of a major molecular species of a chlamydial LPS.  (+info)

Biosynthesis of KDN (2-keto-3-deoxy-D-glycero-D-galacto-nononic acid). Identification and characterization of a KDN-9-phosphate synthetase activity from trout testis. (5/386)

Although the deaminoneuraminic acid or KDN glycotope (2-keto-3-deoxy-D-glycero-D-galacto-nononic acid) is expressed in glycoconjugates that range in evolutionary diversity from bacteria to man, there is little information as to how this novel sugar is synthesized. Accordingly, biosynthetic studies were initiated in trout testis, an organ rich in KDN, to determine how this sialic acid is formed. These studies have shown that the pathway consists of the following three sequential reactions: 1) Man + ATP --> Man-6-P + ADP; 2) Man-6-P + PEP --> KDN-9-P + P(i); 3) KDN-9-P --> KDN + P(i). Reaction 1, catalyzed by a hexokinase, is the 6-O-phosphorylation of mannose to form D-mannose 6-phosphate (Man-6-P). Reaction 2, catalyzed by KDN-9-phosphate (KDN-9-P) synthetase, condenses Man-6-P and phosphoenolpyruvate (PEP) to form KDN-9-P. Reaction 3, catalyzed by a phosphatase, is the dephosphorylation of KDN-9-P to yield free KDN. It is not known if a kinase specific for Man (Reaction 1) and a phosphatase specific for KDN-9-P (Reaction 3) may exist in tissues actively synthesizing KDN. In this study, the KDN-9-P synthetase, an enzyme that has not been previously described, was identified as at least one key enzyme that is specific for the KDN biosynthetic pathway. This enzyme was purified 50-fold from rainbow trout testis and characterized. The molecular weight of the enzyme was estimated to be about 80,000, and activity was maximum at neutral pH in the presence of Mn(2+). N-Acetylneuraminic acid 9-phosphate (Neu5Ac-9-P) synthetase, which catalyzes the condensation of N-acetyl-D-mannosamine 6-phosphate and phosphoenol-pyruvate to produce Neu5Ac-9-P, was co-purified with the KDN-9-P synthetase. Substrate competition experiments revealed, however, that syntheses of KDN-9-P and Neu5Ac-9-P were catalyzed by two separate synthetase activities. The significance of these studies takes on added importance with the recent discovery that the level of free KDN is elevated in human fetal cord but not matched adult red blood cells and in ovarian cancer cells (Inoue, S., Lin, S-L., Chang, T., Wu, S-H., Yao, C-W., Chu, T-Y., Troy, F. A., II, and Inoue, Y. (1998) J. Biol. Chem. 273, 27199-27204). This unexpected finding emphasizes the need to understand more fully the role that free KDN and KDN-glycoconjugates may play in normal hematopoiesis and malignancy.  (+info)

The reactivity of the 2-deoxyribonolactone lesion in single-stranded DNA and its implication in reaction mechanisms of DNA damage and repair. (6/386)

The formal C1'-oxidation product, 2-deoxyribonolactone, is formed as a result of DNA damage induced via a variety of agents, including gamma-radiolysis and the enediyne antitumor antibiotics. This alkaline labile lesion may also be an intermediate during DNA damage induced by copper-phenanthroline. Oligo-nucleotides containing this lesion at a defined site were formed via aerobic photolysis of oligonucleotides containing a photolabile ketone, and were characterized by gel electrophoresis and electrospray mass spectrometry (ESI-MS). Treatment of oligo-nucleotides containing the lesion with secondary amines produces strand breaks consisting of 3'-phosphate termini, and products which migrate more slowly in polyacrylamide gels. MALDI-TOF mass spectrometry analysis indicates that the slower moving products are formal adducts of the beta-elimination product resulting from 2-deoxyribonolactone and one molecule of amine. The addition of beta-mercapto-ethanol to the reaction mixture produces thiol adducts as well. The stability of these adducts suggests that they cannot be the labile species characterized by gel electrophoresis in copper-phenanthroline-mediated strand scission. The characterization of these adducts by mass spectrometry also provides, by analogy, affirmation of proposals regarding the reactivity of nucleophiles with the beta-elimination product of abasic sites. Finally, the effects of this lesion and the various adducts on DNA repair enzymes are unknown, but their facile generation from oligonucleotides containing a photolabile ketone suggests that such issues could be addressed.  (+info)

2-Keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN)- and N-acetylneuraminic acid-cleaving sialidase (KDN-sialidase) and KDN-cleaving hydrolase (KDNase) from the hepatopancreas of oyster, Crassostrea virginica. (7/386)

KDN (2-keto-3-deoxy-D-glycero-D-galacto-nononic acid), a sialic acid analog, has been found to be widely distributed in nature. Despite the structural similarity between KDN and Neu5Ac, alpha-ketosides of KDN are refractory to conventional sialidases. We found that the hepatopancreas of the oyster, Crassostrea virginica, contains two KDN-cleaving sialidases but is devoid of conventional sialidase. The major sialidase, KDN-sialidase, effectively cleaves alpha-ketosidically linked KDN and also slowly cleaves the alpha-ketosides of Neu5Ac. The minor sialidase, KDNase, is specific for alpha-ketosides of KDN. We were able to separate these two KDN-cleaving enzymes using hydrophobic interaction and cation-exchange chromatographies. The rate of hydrolysis of 4-methylumbelliferyl-alpha-KDN (MU-KDN) by KDN-sialidase is 30 times faster than that of MU-Neu5Ac in the presence of 0.2 M NaCl, whereas in the absence of NaCl this ratio is only 8. KDNase hydrolyzes MU-KDN over 500 times faster than MU-Neu5Ac and is not affected by NaCl. KDN-sialidase purified to electrophoretically homogeneous form was found to have a molecular mass of 25 kDa and an isoelectric point of 8.4. One of the three tryptic peptides derived from KDN-sialidase contains the consensus motif, SXDXGXTW, that has been found in all conventional sialidases. Kinetic analysis of the inhibition of the hydrolysis of MU-KDN and MU-Neu5Ac by 2, 3-dehydro-2-deoxy-KDN (KDN2-en) and 2,3-dehydro-2-deoxy-(Neu5Ac2-en) suggests that KDN-sialidase contains two separate active sites for the hydrolysis of KDN and Neu5Ac. Both KDN-sialidase and KDNase effectively hydrolyze KDN-G(M3), KDNalpha2-->3Gal beta1-->4Glc, KDNalpha2-->6Galbeta1-->4Glc, KDNalpha2-->6-N-acetylgalactosaminitol, KDNalpha2-->6(KDNalpha2-->3)N-acetylgalactosaminitol, and KDNalpha2-->6(GlcNAcbeta1-->3)N-acetylgalactosaminitol. However, only KDN-sialidase also slowly hydrolyzes G(M3), Neu5Acalpha2-->3Galbeta1-->4Glc, and Neu5Acalpha2-->6Galbeta1-->4Glc. These two KDN-cleaving sialidases should be useful for studying the structure and function of KDN-containing glycoconjugates.  (+info)

Separation of inner and outer membranes of Rickettsia prowazeki and characterization of their polypeptide compositions. (8/386)

Rickettsia prowazeki were disrupted in a French pressure cell and fractionated into soluble (cytoplasm) and envelope fractions. The envelope contained 25% of the cell protein, with the cytoplasm containing 75%. Upon density gradient centrifugation, the envelope fraction separated into a heavy band (1.23 g/cm3) and a lighter band (1.19 g/cm3). The heavy band had a high content of 2-keto-3-deoxyoctulosonic acid, a marker for bacterial lipopolysaccharide, but had no succinic dehydrogenase, a marker for cytoplasmic membrane activity, and therefore represented outer membrane. The lighter band exhibited a high succinate dehydrogenase activity, and thus contained inner (cytoplasmic) membrane. Outer membrane purified by this method was less than 5% contaiminated by cytoplasmic membrane; however, inner membrane from the gradient was as much as 30% contaminated by outer membrane. The protein composition of each cellular fraction was characterized by sodium dodecyl sulfate--polyacrylamide gel electrophoresis. The outer membrane contained four major proteins, which were also major proteins of the whole cell. The cytoplasmic membrane and soluble cytoplasm exhibited a more complex pattern on gels.  (+info)