Inward rectification in KATP channels: a pH switch in the pore. (17/155046)

Inward-rectifier potassium channels (Kir channels) stabilize the resting membrane potential and set a threshold for excitation in many types of cell. This function arises from voltage-dependent rectification of these channels due to blockage by intracellular polyamines. In all Kir channels studied to date, the voltage-dependence of rectification is either strong or weak. Here we show that in cardiac as well as in cloned KATP channels (Kir6.2 + sulfonylurea receptor) polyamine-mediated rectification is not fixed but changes with intracellular pH in the physiological range: inward-rectification is prominent at basic pH, while at acidic pH rectification is very weak. The pH-dependence of polyamine block is specific for KATP as shown in experiments with other Kir channels. Systematic mutagenesis revealed a titratable C-terminal histidine residue (H216) in Kir6.2 to be the structural determinant, and electrostatic interaction between this residue and polyamines was shown to be the molecular mechanism underlying pH-dependent rectification. This pH-dependent block of KATP channels may represent a novel and direct link between excitation and intracellular pH.  (+info)

Role of alphavbeta3 integrin in the activation of vascular endothelial growth factor receptor-2. (18/155046)

Interaction between integrin alphavbeta3 and extracellular matrix is crucial for endothelial cells sprouting from capillaries and for angiogenesis. Furthermore, integrin-mediated outside-in signals co-operate with growth factor receptors to promote cell proliferation and motility. To determine a potential regulation of angiogenic inducer receptors by the integrin system, we investigated the interaction between alphavbeta3 integrin and tyrosine kinase vascular endothelial growth factor receptor-2 (VEGFR-2) in human endothelial cells. We report that tyrosine-phosphorylated VEGFR-2 co-immunoprecipitated with beta3 integrin subunit, but not with beta1 or beta5, from cells stimulated with VEGF-A165. VEGFR-2 phosphorylation and mitogenicity induced by VEGF-A165 were enhanced in cells plated on the alphavbeta3 ligand, vitronectin, compared with cells plated on the alpha5beta1 ligand, fibronectin or the alpha2beta1 ligand, collagen. BV4 anti-beta3 integrin mAb, which does not interfere with endothelial cell adhesion to vitronectin, reduced (i) the tyrosine phosphorylation of VEGFR-2; (ii) the activation of downstream transductor phosphoinositide 3-OH kinase; and (iii) biological effects triggered by VEGF-A165. These results indicate a new role for alphavbeta3 integrin in the activation of an in vitro angiogenic program in endothelial cells. Besides being the most important survival system for nascent vessels by regulating cell adhesion to matrix, alphavbeta3 integrin participates in the full activation of VEGFR-2 triggered by VEGF-A, which is an important angiogenic inducer in tumors, inflammation and tissue regeneration.  (+info)

Smad3-Smad4 and AP-1 complexes synergize in transcriptional activation of the c-Jun promoter by transforming growth factor beta. (19/155046)

Transcriptional regulation by transforming growth factor beta (TGF-beta) is a complex process which is likely to involve cross talk between different DNA responsive elements and transcription factors to achieve maximal promoter activation and specificity. Here, we describe a concurrent requirement for two discrete responsive elements in the regulation of the c-Jun promoter, one a binding site for a Smad3-Smad4 complex and the other an AP-1 binding site. The two elements are located 120 bp apart in the proximal c-Jun promoter, and each was able to independently bind its corresponding transcription factor complex. The effects of independently mutating each of these elements were nonadditive; disruption of either sequence resulted in complete or severe reductions in TGF-beta responsiveness. This simultaneous requirement for two distinct and independent DNA binding elements suggests that Smad and AP-1 complexes function synergistically to mediate TGF-beta-induced transcriptional activation of the c-Jun promoter.  (+info)

A low-affinity serum response element allows other transcription factors to activate inducible gene expression in cardiac myocytes. (20/155046)

Hypertrophic growth of cardiac muscle cells is induced by a variety of physiological and pathological stimuli and is associated with a number of changes, including activation of genes such as atrial natriuretic factor. We found that two serum response element (SRE)-like DNA elements, one of which does not meet the consensus sequence and binds serum response factor (SRF) with low affinity, regulate the activity of this promoter. Surprisingly, the ability to induce the promoter by two different physiologic stimuli, as well as various activated transcription factors, including SRF-VP16, was primarily dependent upon the nonconsensus rather than the consensus SRE. This SRE controls the induction of gene expression via an unusual mechanism in that it is required to allow some, but not all, active transcription factors at unrelated sites on the promoter to stimulate gene expression. Thus, in addition to regulation of SRF activity by growth stimuli, regulation of a low-affinity SRE element controls inducible gene expression by modulating the ability of other transcription factors to stimulate the transcription machinery.  (+info)

Vascular endothelial growth factor activates nuclear factor of activated T cells in human endothelial cells: a role for tissue factor gene expression. (21/155046)

Vascular endothelial growth factor (VEGF) is a potent angiogenic inducer that stimulates the expression of tissue factor (TF), the major cellular initiator of blood coagulation. Here we show that signaling triggered by VEGF induced DNA-binding and transcriptional activities of nuclear factor of activated T cells (NFAT) and AP-1 in human umbilical vein endothelial cells (HUVECs). VEGF also induced TF mRNA expression and gene promoter activation by a cyclosporin A (CsA)-sensitive mechanism. As in lymphoid cells, NFAT was dephosphorylated and translocated to the nucleus upon activation of HUVECs, and these processes were blocked by CsA. NFAT was involved in the VEGF-mediated TF promoter activation as evidenced by cotransfection experiments with a dominant negative version of NFAT and site-directed mutagenesis of a newly identified NFAT site within the TF promoter that overlaps with a previously identified kappaB-like site. Strikingly, this site bound exclusively NFAT not only from nuclear extracts of HUVECs activated by VEGF, a stimulus that failed to induce NF-kappaB-binding activity, but also from extracts of cells activated with phorbol esters and calcium ionophore, a combination of stimuli that triggered the simultaneous activation of NFAT and NF-kappaB. These results implicate NFAT in the regulation of endothelial genes by physiological means and shed light on the mechanisms that switch on the gene expression program induced by VEGF and those regulating TF gene expression.  (+info)

Deletion of multiple immediate-early genes from herpes simplex virus reduces cytotoxicity and permits long-term gene expression in neurons. (22/155046)

Herpes simplex virus type 1 (HSV-1) has many attractive features that suggest its utility for gene transfer to neurons. However, viral cytotoxicity and transient transgene expression limit practical applications even in the absence of viral replication. Mutant viruses deleted for the immediate early (IE) gene, ICP4, an essential transcriptional transactivator, are toxic to many cell types in culture in which only the remaining IE genes are expressed. In order to test directly the toxicity of other IE gene products in neurons and develop a mutant background capable of longterm transgene expression, we generated mutants deleted for multiple IE genes in various combinations and tested their relative cytotoxicity in 9L rat gliosarcoma cells, Vero monkey kidney cells, and primary rat cortical and dorsal root neurons in culture. Viral mutants deleted simultaneously for the IE genes encoding ICP4, ICP22 and ICP27 showed substantially reduced cytotoxicity compared with viruses deleted for ICP4 alone or ICP4 in combination with either ICP22, ICP27 or ICP47. Infection of neurons in culture with these triple IE deletion mutants substantially enhanced cell survival and permitted transgene expression for over 21 days. Such mutants may prove useful for efficient gene transfer and extended transgene expression in neurons in vitro and in vivo.  (+info)

The human F box protein beta-Trcp associates with the Cul1/Skp1 complex and regulates the stability of beta-catenin. (23/155046)

Ubiquitin-conjugation targets numerous cellular regulators for proteasome-mediated degradation. Thus, the identification of ubiquitin ligases and their physiological substrates is crucially important, especially for those cases in which aberrant levels of regulatory proteins (e.g., beta-catenin, p27) result from a deregulated ubiquitination pathway. In yeast, the proteolysis of several G1 regulators is controlled by ubiquitin ligases (or SCFs) formed by three subunits: Skp1, Cul A (Cdc53), and one of many F-box proteins. Specific F-box proteins (Fbps) recruit different substrates to the SCF. Although many Fbps have been identified in mammals, their specific substrates and the existence of multiple SCFs have not yet been reported. We have found that one human Fbp, beta-Trcp (beta-Transducin repeat containing protein), does indeed form a novel SCF with human Skp1 and Cul1. Consistent with recent reports indicating that Xenopus and Drosophila beta-Trcp homologs act as negative regulators of the Wnt/beta-catenin signaling pathway, we report here that human beta-Trcp interacts with beta-catenin in vivo. Furthermore, beta-catenin is specifically stabilized in vivo by the expression of a dominant negative beta-Trcp. These results indicate that the Cul1/Skp1/beta-Trcp complex forms a ubiquitin ligase that mediates the degradation of beta-catenin.  (+info)

Reciprocal control of T helper cell and dendritic cell differentiation. (24/155046)

It is not known whether subsets of dendritic cells provide different cytokine microenvironments that determine the differentiation of either type-1 T helper (TH1) or TH2 cells. Human monocyte (pDC1)-derived dendritic cells (DC1) were found to induce TH1 differentiation, whereas dendritic cells (DC2) derived from CD4+CD3-CD11c- plasmacytoid cells (pDC2) induced TH2 differentiation by use of a mechanism unaffected by interleukin-4 (IL-4) or IL-12. The TH2 cytokine IL-4 enhanced DC1 maturation and killed pDC2, an effect potentiated by IL-10 but blocked by CD40 ligand and interferon-gamma. Thus, a negative feedback loop from the mature T helper cells may selectively inhibit prolonged TH1 or TH2 responses by regulating survival of the appropriate dendritic cell subset.  (+info)