Cytokinin activation of Arabidopsis cell division through a D-type cyclin. (1/67)

Cytokinins are plant hormones that regulate plant cell division. The D-type cyclin CycD3 was found to be elevated in a mutant of Arabidopsis with a high level of cytokinin and to be rapidly induced by cytokinin application in both cell cultures and whole plants. Constitutive expression of CycD3 in transgenic plants allowed induction and maintenance of cell division in the absence of exogenous cytokinin. Results suggest that cytokinin activates Arabidopsis cell division through induction of CycD3 at the G1-S cell cycle phase transition.  (+info)

A gene encoding the cytokinin enzyme zeatin O-xylosyltransferase of Phaseolus vulgaris. (2/67)

Zeatin is the most active and ubiquitous form of the naturally occurring cytokinins. Glycosyl conjugates of zeatin are found in many plant tissues and are considered important for storage and protection against degradative enzymes. Two enzymes catalyzing the formation of O-glycosyl derivatives of zeatin have been characterized, O-glucosyltransferase and O-xylosyltransferase, occurring in seeds of lima bean (Phaseolus lunatus) and bean (Phaseolus vulgaris), respectively. Recently, the ZOG1 gene (zeatin O-glucosyltansferase) was isolated from P. lunatis (). Based on the ZOG1 sequence, the ZOX1 gene (zeatin O-xylosyltransferase) was cloned from P. vulgaris. ZOX1 contains an open reading frame of 1362 bp that codes for a 454-amino acid peptide of 51 kD. The recombinant protein has properties identical to the native enzyme: it catalyzes O-xylosylzeatin formation with UDP-Xyl as a glycosyl donor but does not recognize UDP-Glucose as a substrate. The ZOX1 and ZOG1 genes exhibit 93% identity at the nucleotide level and 90% similarity at the amino acid level. Neither gene contains introns. These zeatin-specific genes and their promoters will be useful for studies of the regulation of active versus storage forms of cytokinins. Comparison of sequences encoding similar enzymes with distinct substrate specificity may lead to identification of epitopes specific to cytokinin and glycosyl donor molecules.  (+info)

A low content in zeatin type cytokinins is not restrictive for the occurrence of G1/S transition in tobacco BY-2 cells. (3/67)

Theories on the importance of cytokinins in G1/S transition control are manifold and contradictory. By establishing a double A(phi-PZ block, maximal synchronization of a BY-2 suspension culture was obtained to investigate the effect of cytokinin depletion on G1/S transition. Lovastatin was used as a specific inhibitor of cytokinin biosynthesis. Flow cytometry showed that the G1/S transition occurred regardless of the cytokinin drop. This observation indicates an extremely low dose requiry for that stage of the cell cycle. It is very likely that precisely the downregulation of zeatin type cytokinins matters for the G1/S transition to occur, since cytokinin addition at early G1 blocked the cycle at G1/S.  (+info)

Cell-division factors from Vinca rosca L. crown gall tumor tissue. (4/67)

A cell-division factor has been precipitated from extracts of cultured Vinca rosea L. crown gall tumor tissue by using the mercuric acetate procedure previously employed by Wood and colleagues to obtain their "cytokinesin I." On the basis of its mass spectrum, ultraviolet light absorbancy spectra, solubilities, chromatographic migration values, and growth activity, the factor is ribosyl-trans-zeatin, that is, 6-(4-hydroxy-3-methyl-trans-2-butenylamino)-9-beta-D-ribofuranosylpurine. Ribosylzeatin has now been isolated from tumor tissue by four experimental techniques; any possibility that it is an artifact seems to have been eliminated. Contrary to the report by Wood and colleagues, synthetic ribosylzeatin is precipitated from an aqueous solution by mercuric acetate, provided the complete precipitation procedure is utilized. These facts and others discussed strongly support our suggestion that ribosylzeatin was present in the preparation ("cytokinesin I") examined by Wood and colleagues in several biological assays. The reasons advanced by Wood and others for rejecting this suggestion have been found either not to be pertinent to the question or to have insufficient experimental bases.  (+info)

Stunted plant 1 mediates effects of cytokinin, but not of auxin, on cell division and expansion in the root of Arabidopsis. (5/67)

Plants control organ growth rate by adjusting the rate and duration of cell division and expansion. Surprisingly, there have been few studies where both parameters have been measured in the same material, and thus we have little understanding of how division and expansion are regulated interdependently. We have investigated this regulation in the root meristem of the stunted plant 1 (stp1) mutation of Arabidopsis, the roots of which elongate more slowly than those of the wild type and fail to accelerate. We used a kinematic method to quantify the spatial distribution of the rate and extent of cell division and expansion, and we compared stp1 with wild type and with wild type treated with exogenous cytokinin (1 microM zeatin) or auxin (30 nM 2,4-dichlorophenoxyacetic acid). All treatments reduced average cell division rates, which reduced cell production by the meristem. Auxin lowered root elongation by narrowing the elongation zone and reducing the time spent by a cell in this zone, but did not decrease maximal strain rate. In addition, auxin increased the length of the meristem. In contrast, cytokinin reduced root elongation by lowering maximal strain rate, but did not change the time spent by a cell within the elongation zone; also, cytokinin blocked the increase in length and cell number of the meristem and elongation zone. The cytokinin-treated wild type phenocopied stp1 in nearly every detail, supporting the hypothesis that cytokinin affects root growth via STP1. The opposite effects of auxin and cytokinin suggest that the balance of these hormones may control the size of the meristem.  (+info)

A maize cytokinin gene encoding an O-glucosyltransferase specific to cis-zeatin. (6/67)

Zeatin is a naturally occurring cytokinin. Biosynthesis and metabolism studies of zeatin have been directed mostly at the trans isomer, although cis-zeatin and its riboside occur as major components in some plant species. It is not known whether parallel regulatory pathways exist for the two isomers. Based on the sequence of the gene ZOG1 encoding a trans-zeatin O-glucosyltransferase from Phaseolus (EC ), a cis-zeatin-specific O-glucosyltransferase was isolated from maize. This gene, cisZOG1, contains an ORF of 1,401 nucleotides encoding a protein of 51.1 kDa with 41% identity to the Phaseolus ZOG1 protein. Unexpectedly, the maize enzyme recognizes as substrates cis-zeatin and UDP-glucose but not cis-ribosylzeatin, trans-zeatin, or trans-ribosylzeatin. This finding indicates the existence of cis-specific regulatory elements in plants and suggests that cis-zeatin and derivatives may be more important in cytokinin homeostasis than currently recognized.  (+info)

Enzymic synthesis of indole-3-acetyl-1-O-beta-d-glucose. II. Metabolic characteristics of the enzyme. (7/67)

The synthesis of indole-3-acetyl-1-O-beta-D-glucose from indole-3-acetic acid (IAA) and uridine diphosphoglucose (UDPG) has been shown to be a reversible reaction with the equilibrium away from ester formation and toward formation of IAA. The enzyme occurs primarily in the liquid endosperm of the corn kernel but some activity occurs in the embryo. It is relatively specific showing no glucose ester formation with oxindole-3-acetic acid or 7-hydroxy-oxindole-3-acetic acid, and low activity with phenylpropene acids, such as rho-coumaric acid. The enzyme is also specific for the nucleotide sugar showing no activity with UDPGalactose or UDPXylose. The enzyme is inhibited by inorganic pyrophosphate, by phosphate esters and by phospholipids, particularly phosphatidyl ethanolamine. The enzyme is inhibited by zeatin, by 2,4-dichlorophenoxy-acetic acid, by IAA-myo-inositol and IAA-glucan, but not by zeatin riboside, and only weakly by gibberellic acid, abscisic acid and kinetin. The reaction is slightly stimulated by both calcium and calmodulin and, in some cases, by thiol compounds. The role of this enzyme in the homeostatic control of indole-3-acetic acid levels in Zea mays is discussed.  (+info)

Hormonal changes in the grains of rice subjected to water stress during grain filling. (8/67)

Lodging-resistant rice (Oryza sativa) cultivars usually show slow grain filling when nitrogen is applied in large amounts. This study investigated the possibility that a hormonal change may mediate the effect of water deficit that enhances whole plant senescence and speeds up grain filling. Two rice cultivars showing high lodging resistance and slow grain filling were field grown and applied with either normal or high amount nitrogen (HN) at heading. Well-watered and water-stressed (WS) treatments were imposed 9 days post anthesis to maturity. Results showed that WS increased partitioning of fixed (14)CO(2) into grains, accelerated the grain filling rate but shortened the grain filling period, whereas the HN did the opposite way. Cytokinin (zeatin + zeatin riboside) and indole-3-acetic acid contents in the grains transiently increased at early filling stage and WS treatments hastened their declines at the late grain filling stage. Gibberellins (GAs; GA(1) + GA(4)) in the grains were also high at early grain filling but HN enhanced, whereas WS substantially reduced, its accumulation. Opposite to GAs, abscisic acid (ABA) in the grains was low at early grain filling but WS remarkably enhanced its accumulation. The peak values of ABA were significantly correlated with the maximum grain filling rates (r = 0.92**, P < 0.01) and the partitioning of fixed (14)C into grains (r = 0.95**, P < 0.01). Exogenously applied ABA on pot-grown HN rice showed similar results as those by WS. Results suggest that an altered hormonal balance in rice grains by water stress during grain filling, especially a decrease in GAs and an increase in ABA, enhances the remobilization of prestored carbon to the grains and accelerates the grain filling rate.  (+info)