A novel action of human apurinic/apyrimidinic endonuclease: excision of L-configuration deoxyribonucleoside analogs from the 3' termini of DNA. (9/210)

beta-l-Dioxolane-cytidine (l-OddC, BCH-4556, Troxacitabine) is a novel unnatural stereochemical nucleoside analog that is under phase II clinical study for cancer treatment. This nucleoside analog could be phosphorylated and subsequently incorporated into the 3' terminus of DNA. The cytotoxicity of l-OddC was correlated with the amount of l-OddCMP in DNA, which depends on the incorporation by DNA polymerases and the removal by exonucleases. Here we reported the purification and identification of the major enzyme that could preferentially remove l-OddCMP compared with dCMP from the 3' termini of DNA in human cells. Surprisingly, this enzyme was found to be apurinic/apyrimidinic endonuclease (APE1) (), a well characterized DNA base excision repair protein. APE1 preferred to remove l- over d-configuration nucleosides from 3' termini of DNA. The efficiency of removal of these deoxycytidine analogs were as follows: l-OddC > beta-l-2',3'-dideoxy-2', 3'-didehydro-5-fluorocytidine > beta-l-2',3'-dideoxycytidine > beta-l-2',3'-dideoxy-3'-thiocytidine > beta-d-2',3'-dideoxycytidine > beta-d-2',2'-difluorodeoxycytidine > beta-d-2'-deoxycytidine >/= beta-d-arabinofuranosylcytosine. This report is the first demonstration that an exonuclease can preferentially excise l-configuration nucleoside analogs. This discovery suggests that APE1 could be critical for the activity of l-OddC or other l-nucleoside analogs and may play additional important roles in cells that were not previously known.  (+info)

Rat multispecific organic anion transporter 1 (rOAT1) transports zidovudine, acyclovir, and other antiviral nucleoside analogs. (10/210)

Organic anion transporter 1 (OAT1) is a p-aminohippurate/dicarboxylate exchanger that plays a primary role in the tubular secretion of endogenous and exogenous organic anions. OAT1 is located in the basolateral membrane of the proximal tubular cells and mediates the uptake of various organic anions from the peritubular fluid. In this study, we investigated the transport of antiviral nucleoside analogs via rat OAT1 (rOAT1) using a heterologous expression system in Xenopus laevis oocytes. Oocytes injected with rOAT1 cRNA showed significantly higher uptake of zidovudine (AZT) and acyclovir (ACV) than control oocytes. rOAT1-mediated uptake of AZT and ACV was probenecid-sensitive and increased by the outwardly directed gradient of glutarate. The affinity of rOAT1 for AZT and ACV was determined to be 68 and 242 microM, respectively. Five other antiviral agents that we studied (zalcitabine, didanosine, lamivudine, stavudine, and trifluridine) were also shown to be transported by rOAT1, whereas foscarnet, a phosphate analog, was not. The aforementioned nucleoside analogs lack a typical anionic group and are not very hydrophobic. This study demonstrates extension of the substrate spectrum of rOAT1 and provides a molecular basis for the pharmacokinetics of antiviral nucleoside analogs.  (+info)

Comparison of three different sensitive assays for hepatitis B virus DNA in monitoring of responses to antiviral therapy. (11/210)

The aim of our study was to compare the performances of two new hepatitis B virus (HBV) DNA assays, a cross-linking assay (NAXCOR) and a hybrid-capture amplification assay (Digene), versus the widely used branched-DNA (bDNA) assay (Chiron) in the monitoring of HBV DNA levels during antiviral treatment. Serial serum samples from 12 chronically HBV infected patients undergoing a phase II trial of an antiviral drug, 2',3'-dideoxy-5-fluoro-3'-thiacytidine (FTC), were studied. A total of 96 serum samples were tested for HBV DNA using the cross-linking, hybrid-capture amplification, and bDNA assays. In the comparison of the cross-linking and bDNA assays, concordant results were found in 77 (80.3%) samples, no significant difference was found between the median log(10) HBV DNA levels (6.66 versus 7. 17 meq/ml), and the results of the two assays were closely correlated (r = 0.95). In the comparison of the hybrid-capture amplification and bDNA assays, concordant results were found in 79 (82.3%) samples, no significant difference was found between the median log(10) HBV DNA levels (6.98 versus 6.99 meq/ml), and the results of the two assays were closely correlated (r = 0.99). Six (6. 3%) samples by the cross-linking assay and 10 (10.4%) samples by the bDNA assay required retesting because of unacceptably high within-run coefficients of variance. No sample required retesting in the hybrid-capture amplification assay according to the internal validation. In conclusion, the cross-linking and hybrid-capture amplification assays were as sensitive as the bDNA assay for HBV DNA detection and can be recommended for monitoring of HBV DNA levels during antiviral treatment.  (+info)

Evidence of a role for the Q151L mutation and the viral background in development of multiple dideoxynucleoside-resistant human immunodeficiency virus type 1. (12/210)

The majority of human immunodeficiency virus type 1 (HIV-1)-infected patients treated with zidovudine (AZT) plus zalcitabine (ddC) and didanosine (ddI) develop AZT resistance mediated by mutations such as T215Y and M41L. Only a small proportion of patients develop multiple dideoxynucleoside resistance (MDNR) mediated by the Q151M mutation. To gain insight into the factors responsible for the low frequency of selection of Q151M, we evaluated the replication capabilities of recombinant viruses carrying two possible intermediates (151L or 151K) of the Q151M mutation generated in different reverse transcriptase (RT) genetic backgrounds. The 151L and 151K mutations were introduced by site-directed mutagenesis in RTs from two patient-derived HIV-1 isolates that had either wild type (WT) Q or the Q151M (posttreatment isolate) mutation. For comparison, both mutations were also introduced in a laboratory-adapted HIV-1 strain (HIV-1(HXB2)). Analysis of replication capabilities showed that both 151L and 151K were lethal in RT genetic backgrounds of the WT isolate and in HIV-1(HXB2). In contrast, 151L but not 151K allowed virus replication in RT backgrounds of the posttreatment isolate. Three mutations (V35I, S68G, and I178M) were present in the RT background of the posttreatment isolate but not in the WT isolate. Introduction of S68G in the RT of both the WT isolate and HIV-1(HXB2) partially restored replication capacity of recombinants carrying the 151L mutation. The S68G mutation alone did not confer a significant replicative disadvantage in WT viruses. Like HIV-1(151M), HIV-1(151L) RT was found to have six- to eightfold resistance to AZT-triphosphate (TP), ddA-TP, and ddC-TP, indicating an MDNR phenotype. However, HIV-1(151L) was found to be less fit than HIV-1(151M), which may explain the preferential selection of HIV-1(151M) observed in vivo. The demonstrated ability of HIV-1(151L/68G) to replicate and the associated MDNR suggest that 151L is a potential intermediate of Q151M. The dependence of HIV-1(151L) on other mutations, such as S68G, for replication may explain the low frequency of the Q151M-mediated pathway of resistance.  (+info)

Antiviral activity of beta-L-2',3'-dideoxy-2',3'-didehydro-5-fluorocytidine in woodchucks chronically infected with woodchuck hepatitis virus. (13/210)

The L-nucleoside analog beta-L-2',3'-dideoxy-2',3'-didehydro-5-fluorocytidine (beta-L-Fd4C) was first shown to exhibit potent activity against hepatitis B virus (HBV) in tissue culture and then to significantly inhibit viral spread during acute infection in the duck HBV model (F. Le Guerhier et al., Antimicrob. Agents Chemother. 44:111-122, 2000). We have therefore examined its antiviral activity in a mammalian model of chronic HBV infection, the woodchuck chronically infected with woodchuck hepatitis virus (WHV). Side-by-side comparison of beta-L-Fd4C and lamivudine administered intraperitoneally during short-term and long-term protocols demonstrated a more profound inhibition of viremia in beta-L-Fd4C-treated groups. Moreover, beta-L-Fd4C induced a marked inhibition of intrahepatic viral DNA synthesis compared with that induced by lamivudine. Nevertheless, covalently closed circular (CCC) DNA persistence explained the lack of clearance of infected hepatocytes expressing viral antigens and the relapse of WHV replication after drug withdrawal. Liver histology showed a decrease in the inflammatory activity of chronic hepatitis in woodchucks receiving beta-L-Fd4C. An electron microscopy study showed the absence of ultrastructural changes of hepatic mitochondria, biliary canaliculi, and bile ducts. However, a loss of weight was observed in all animals, whatever the treatment, as was a transient skin pigmentation in all woodchucks during beta-L-Fd4C treatment. There was no evidence that lamivudine or beta-L-Fd4C could prevent the development of hepatocellular carcinoma with the protocols used. These results indicate that beta-L-Fd4C exhibits a more potent antiviral effect than lamivudine in the WHV model but was not able to eradicate CCC DNA and infected cells from the liver at the dosage and with the protocol used.  (+info)

Differential incorporation and removal of antiviral deoxynucleotides by human DNA polymerase gamma. (14/210)

Mitochondrial toxicity can result from antiviral nucleotide analog therapy used to control human immunodeficiency virus type 1 infection. We evaluated the ability of such analogs to inhibit DNA synthesis by the human mitochondrial DNA polymerase (pol gamma) by comparing the insertion and exonucleolytic removal of six antiviral nucleotide analogs. Apparent steady-state K(m) and k(cat) values for insertion of 2',3'-dideoxy-TTP (ddTTP), 3'-azido-TTP (AZT-TP), 2',3'-dideoxy-CTP (ddCTP), 2',3'-didehydro-TTP (D4T-TP), (-)-2',3'-dideoxy-3'-thiacytidine (3TC-TP), and carbocyclic 2',3'-didehydro-ddGTP (CBV-TP) indicated incorporation of all six analogs, albeit with varying efficiencies. Dideoxynucleotides and D4T-TP were utilized by pol gamma in vitro as efficiently as natural deoxynucleotides, whereas AZT-TP, 3TC-TP, and CBV-TP were only moderate inhibitors of DNA chain elongation. Inefficient excision of dideoxynucleotides, D4T, AZT, and CBV from DNA predicts persistence in vivo following successful incorporation. In contrast, removal of 3'-terminal 3TC residues was 50% as efficient as natural 3' termini. Finally, we observed inhibition of exonuclease activity by concentrations of AZT-monophosphate known to occur in cells. Thus, although their greatest inhibitory effects are through incorporation and chain termination, persistence of these analogs in DNA and inhibition of exonucleolytic proofreading may also contribute to mitochondrial toxicity.  (+info)

Efficient pyrophosphorolysis by a hepatitis B virus polymerase may be a primer-unblocking mechanism. (15/210)

Effective antiviral agents are thought to inhibit hepatitis B virus (HBV) DNA synthesis irreversibly by chain termination because reverse transcriptases (RT) lack an exonucleolytic activity that can remove incorporated nucleotides. However, since the parameters governing this inhibition are poorly defined, fully delineating the catalytic mechanism of the HBV-RT promises to facilitate the development of antiviral drugs for treating chronic HBV infection. To this end, pyrophosphorolysis and pyrophosphate exchange, two nonhydrolytic RT activities that result in the removal of newly incorporated nucleotides, were characterized by using endogenous avian HBV replication complexes assembled in vivo. Although these activities are presumed to be physiologically irrelevant for every polymerase examined, the efficiency with which they are catalyzed by the avian HBV-RT strongly suggests that it is the first known polymerase to catalyze these reactions under replicative conditions. The ability to remove newly incorporated nucleotides during replication has important biological and clinical implications: these activities may serve a primer-unblocking function in vivo. Analysis of pyrophosphorolysis on chain-terminated DNA revealed that the potent anti-HBV drug beta-l-(-)-2',3'-dideoxy-3'-thiacytidine (3TC) was difficult to remove by pyrophosphorolysis, in contrast to ineffective chain terminators such as ddC. This disparity may account for the strong antiviral efficacy of 3TC versus that of ddC. The HBV-RT pyrophosphorolytic activity may therefore be a novel determinant of antiviral drug efficacy, and could serve as a target for future antiviral drug therapy. The strong inhibitory effect of cytoplasmic pyrophosphate concentrations on viral DNA synthesis may also partly account for the apparent slow rate of HBV genome replication.  (+info)

Insights into the molecular mechanism of mitochondrial toxicity by AIDS drugs. (16/210)

Several of the nucleoside analogs used in the treatment of AIDS exhibit a delayed clinical toxicity limiting their usefulness. The toxicity of nucleoside analogs may be related to their effects on the human mitochondrial DNA polymerase (Pol gamma), the polymerase responsible for mitochondrial DNA replication. Among the AIDS drugs approved by the FDA for clinical use, two are modified cytosine analogs, Zalcitabine (2',3'-dideoxycytidine (ddC)) and Lamivudine (beta-d-(+)-2',3'-dideoxy-3'-thiacytidine ((-)3TC])). (-)3TC is the only analog containing an unnatural l(-) nucleoside configuration and is well tolerated by patients even after long term administration. In cell culture (-)3TC is less toxic than its d(+) isomer, (+)3TC, containing the natural nucleoside configuration, and both are considerably less toxic than ddC. We have investigated the mechanistic basis for the differential toxicity of these three cytosine analogs by comparing the effects of dideoxy-CTP), (+)3TC-triphosphate (TP), and (-)3TC-TP on the polymerase and exonuclease activities of recombinant human Pol gamma. This analysis reveals that Pol gamma incorporates (-)3TC-triphosphate 16-fold less efficiently than the corresponding (+)isomer and 1140-fold less efficiently than dideoxy-CTP, showing a good correlation between incorporation rate and toxicity. The rates of excision of the incorporated analogs from the chain-terminated 3'-end of the DNA primer by the 3'-5'-exonuclease activity of Pol gamma were similar (0.01 s(-)1) for both 3TC analogs. In marked contrast, the rate of exonuclease removal of a ddC chain-terminated DNA occurs at least 2 orders of magnitude slower, suggesting that the failure of the exonuclease to remove ddC may play a major role in its greater toxicity. This study demonstrates that direct analysis of the mitochondrial DNA polymerase structure/function relationships may provide valuable insights leading to the design of less toxic inhibitors.  (+info)