Loss of sex discrimination and male-male aggression in mice deficient for TRP2. (49/321)

The mouse vomeronasal organ (VNO) is thought to mediate social behaviors and neuroendocrine changes elicited by pheromonal cues. The molecular mechanisms underlying the sensory response to pheromones and the behavioral repertoire induced through the VNO are not fully characterized. Using the tools of mouse genetics and multielectrode recording, we demonstrate that the sensory activation of VNO neurons requires TRP2, a putative ion channel of the transient receptor potential family that is expressed exclusively in these neurons. Moreover, we show that male mice deficient in TRP2 expression fail to display male-male aggression, and they initiate sexual and courtship behaviors toward both males and females. Our study suggests that, in the mouse, sensory activation of the VNO is essential for sex discrimination of conspecifics and thus ensures gender-specific behavior.  (+info)

Calcium transients in the garter snake vomeronasal organ. (50/321)

The signaling cascade involved in chemosensory transduction in the VN organ is incompletely understood. In snakes, the response to nonvolatile prey chemicals is mediated by the vomeronasal (VN) system. Using optical techniques and fluorescent Ca(2+) indicators, we found that prey-derived chemoattractants produce initially a transient cytosolic accumulation of [Ca(2+)](i) in the dendritic regions of VN neurons via two pathways: Ca(2+) release from IP(3)-sensitive intracellular stores and, to a lesser extent, Ca(2+) influx through the plasma membrane. Both components seem to be dependent on IP(3) production. Chemoattractants evoke a short-latency Ca(2+) elevation even in the absence of extracellular Ca(2+), suggesting that in snake VN neurons, Ca(2+) release from intracellular stores is independent of a preceding Ca(2+) influx, and both components are activated in parallel during early stages of chemosensory transduction. Once the response develops in apical dendritic segments, other mechanisms can also contribute to the amplification and modulation of these chemoattractant-mediated cytosolic Ca(2+) transients. In regions close to the cell bodies of the VN neurons, the activation of voltage-sensitive Ca(2+) channels and a Ca(2+)-induced Ca(2+) release from intracellular ryanodine-sensitive stores secondarily boost initial cytosolic Ca(2+) elevations increasing their magnitude and durations. Return of intracellular Ca(2+) to prestimulation levels appears to involve a Ca(2+) extrusion mediated by a Na(+)/Ca(2+) exchanger mechanism that probably plays an important role in limiting the magnitude and duration of the stimulation-induced Ca(2+) transients.  (+info)

Neuropilin-2 mediates axonal fasciculation, zonal segregation, but not axonal convergence, of primary accessory olfactory neurons. (51/321)

The mechanisms that underlie axonal pathfinding of vomeronasal neurons from the vomeronasal organ (VNO) in the periphery to select glomeruli in the accessory olfactory bulb (AOB) are not well understood. Neuropilin-2, a receptor for secreted semaphorins, is expressed in V1R- and V3R-expressing, but not V2R-expressing, postnatal vomeronasal neurons. Analysis of the vomeronasal nerve in neuropilin-2 (npn-2) mutant mice reveals pathfinding defects at multiple choice points. Vomeronasal sensory axons are severely defasciculated and a subset innervates the main olfactory bulb (MOB). While most axons of V1R-expressing neurons reach the AOB and converge into distinct glomeruli in stereotypic locations, they are no longer restricted to their normal anterior AOB target zone. Thus, Npn-2 and candidate pheromone receptors play distinct and complementary roles in promoting the wiring and patterning of sensory neurons in the accessory olfactory system.  (+info)

A putative pheromone receptor gene is expressed in two distinct olfactory organs in goats. (52/321)

Mammals possess two anatomically and functionally distinct olfactory systems. The olfactory epithelium (OE) detects volatile odorants, while the vomeronasal organ (VNO) detects pheromones that elicit innate reproductive and social behavior within a species. In rodent VNO, three multigene families that encode the putative pheromone receptors, V1Rs, V2Rs and V3Rs, have been expressed. We have identified the V1R homologue genes from goat genomic DNA (gV1R genes). Deduced amino acid sequences of gV1R genes show 40-50% and 20-25% identity to those of rat and mouse V1R and V3R genes, respectively, suggesting that the newly isolated goat receptor genes are members of the V1R gene family. One gene (gV1R1 gene) has an open reading frame that encodes a polypeptide of 309 amino acids. It is expressed not only in VNO but also in OE. In situ hybridization analysis revealed that gV1R1 -expressing cells were localized in neuropithelial layers of VNO and OE. These results suggest that the goat may detect pheromone molecules through two distinct olfactory organs.  (+info)

Pheromones, vomeronasal function, and gender-specific behavior. (53/321)

The striking behavioral phenotypes of mice lacking the TRP2 ion channel have highlighted the importance of the vomeronasal organ in gender-specific sexual behavior.  (+info)

Altered sexual and social behaviors in trp2 mutant mice. (54/321)

We have used gene targeting to generate mice with a homozygous deficiency in trp2, a cation channel expressed in the vomeronasal organ (VNO). Trp2 mutant animals reveal a striking reduction in the electrophysiological response to pheromones in the VNO, suggesting that trp2 plays a central role in mediating the pheromone response. These mutants therefore afford the opportunity to examine the role of the VNO in the generation of innate sexual and social behaviors in mice. Trp2 mutant males and nursing females are docile and fail to initiate aggressive attacks on intruder males. Male-female sexual behavior appears normal, but trp2 mutant males also vigorously mount other males. These results suggest that the cation channel trp2 is required in the VNO to detect male-specific pheromones that elicit aggressive behaviors and dictate the choice of sexual partners.  (+info)

Histological definition of the vomeronasal organ in humans and chimpanzees, with a comparison to other primates. (55/321)

The vomeronasal organ (VNO) is a chemosensory structure that has morphological indications of functionality in strepsirhine and New World primates examined to date. In these species, it is thought to mediate certain socio-sexual behaviors. The functionality and even existence of the VNO in Old World primates has been debated. Most modern texts state that the VNO is absent in Old World monkeys, apes, and humans. A recent study on the VNO in the chimpanzee (Smith et al., 2001b) challenged this notion, demonstrating the need for further comparative studies of primates. In particular, there is a need to establish how the human/chimpanzee VNO differs from that of other primates and even nonhomologous mucosal ducts. Histochemical and microscopic morphological characteristics of the VNO and nasopalatine duct (NPD) were examined in 51 peri- and postnatal primates, including humans, chimpanzees, five species of New World monkeys, and seven strepsirhine species. The nasal septum was removed from each primate and histologically processed for coronal sectioning. Selected anteroposterior intervals of the VNO were variously stained with alcian blue (AB)-periodic acid-Schiff (PAS), PAS only, Gomori trichrome, or hematoxylin-eosin procedures. All strepsirhine species had well developed VNOs, with a prominent neuroepithelium and vomeronasal cartilages that nearly surrounded the VNO. New World monkeys had variable amounts of neuroepithelia, whereas Pan troglodytes and Homo sapiens had no recognizable neuroepithelium or vomeronasal nerves (VNNs). Certain unidentified cell types of the human/chimpanzee VNO require further examination (immunohistochemical and electron microscopic). The VNOs of P. troglodytes, H. sapiens, and New World monkeys exhibited different histochemistry of mucins compared to strepsirhine species. The nasopalatine region showed great variation among species. It is a blind-ended pit in P. troglodytes, a glandular recess in H. sapiens, a mucous-producing duct in Otolemur crassicaudatus, and a stratified squamous passageway in all other species. This study also revealed remarkable morphological/histochemical variability in the VNO and nasopalatine regions among the primate species examined. The VNOs of humans and chimpanzees had some structural similarities to nonhomologous ciliated gland ducts seen in other primates. However, certain distinctions from the VNOs of other primates or nonhomologous epithelial structures characterize the human/chimpanzee VNO: 1) bilateral epithelial tubes; 2) a superiorly displaced position in the same plane as the paraseptal cartilages; 3) a homogeneous, pseudostratified columnar morphology with ciliated regions; and 4) mucous-producing structures in the epithelium itself.  (+info)

Aberrant sensory innervation of the olfactory bulb in neuropilin-2 mutant mice. (56/321)

The mammalian olfactory system consists of two anatomically segregated structures, the main olfactory system and the vomeronasal system, which each detect distinct types of chemical stimuli in the environment. During development, sensory neurons establish precise axonal connections with their respective targets within the olfactory bulb. The specificity of the odorant or vomeronasal receptor expressed by the sensory neuron is crucial in this process, yet it is less clear which of the more conventional axon guidance molecules are involved. Here, we show that neuropilin-2, a coreceptor for some of the class 3 semaphorins, is expressed in subpopulations of olfactory and vomeronasal sensory neurons. We generated a knock-out mutation in the neuropilin-2 gene by gene targeting in embryonic stem cells. Neuropilin-2 mutant mice exhibit profound and distinct effects on target innervation within the olfactory bulb. In the main olfactory system, axons of olfactory sensory neurons penetrate into the deeper layers of the main olfactory bulb. In the vomeronasal system, axonal fasciculation within the vomeronasal nerve is affected; some axons are misrouted and innervate glomeruli in an ectopic domain of the accessory olfactory bulb.  (+info)